Saha, Sudipan and Gawlikowski, Jakob and Nandy, Jay and Zhu, Xiao Xiang (2022) Compact Feature Representation for Unsupervised Ood Detection. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3143-3146. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884481.
![]() |
PDF
221kB |
Official URL: https://ieeexplore.ieee.org/document/9884481
Abstract
Distributional mismatch between training and test data may cause the remote sensing models to behave in unpredictable manner, thus reducing the trustworthiness of such models. Most existing methods for out-of-distribution (OOD) detection rely on availability of OOD samples during training. However, access to OOD data during training is counter intuitive and may be impractical sometimes. Considering this, we propose an unsupervised OOD detection model that does not require training OOD data. The proposed method works by projecting the in-domain samples as a union of 1-dimensional subspaces. Due to the compact feature representation of in-domain samples, OOD samples are less likely to occupy the same feature space, thus they are easily identified. Experimental results demonstrate the capability of the proposed method to detect OOD samples.
Item URL in elib: | https://elib.dlr.de/193326/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Compact Feature Representation for Unsupervised Ood Detection | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884481 | ||||||||||||||||||||
Page Range: | pp. 3143-3146 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Out-of-distribution detection; OOD | ||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Institute of Data Science Institute of Data Science > Data Analysis and Intelligence | ||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Deposited On: | 16 Jan 2023 08:45 | ||||||||||||||||||||
Last Modified: | 15 Jan 2025 14:08 |
Repository Staff Only: item control page