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ABSTRACT

Distributional mismatch between training and test data may
cause the remote sensing models to behave in unpredictable
manner, thus reducing the trustworthiness of such models.
Most existing methods for out-of-distribution (OOD) detec-
tion rely on availability of OOD samples during training.
However, access to OOD data during training is counter intu-
itive and may be impractical sometimes. Considering this, we
propose an unsupervised OOD detection model that does not
require training OOD data. The proposed method works by
projecting the in-domain samples as a union of 1-dimensional
subspaces. Due to the compact feature representation of in-
domain samples, OOD samples are less likely to occupy the
same feature space, thus they are easily identified. Exper-
imental results demonstrate the capability of the proposed
method to detect OOD samples.

Index Terms— Uncertainty, out-of-distribution, trust-
worthiness, deep learning, unsupervised learning, remote
sensing

1. INTRODUCTION

There has never been a time before with such abundant re-
mote sensing data, offering great potential for the data sci-
ence enabled methods to advance understanding of many en-
vironmental problems. Most such methods are based on deep
learning and have shown excellent performance in almost all
remote sensing tasks, including image classification, change
detection, and fusion [1, 2]. However, deep learning methods
are data-hungry and require abundant amount of training data
characterizing the target distribution. Deviation of test data
from training data leads to significant performance decline.
Such deviation may be caused by geographical shift, sensory
shift, and presence of unseen classes. In addition to mere per-
formance decline, shift in target data distribution may also
lead the model to produce wrong prediction, however with-
out giving any cue to the user about possible incorrect pre-
diction. This may cause debacle in time-bound applications,
e.g., leading rescue teams to wrong locations when identify-
ing destructed buildings immediately after a disaster.
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Predictive uncertainty estimation has recently emerged as
research topic in the machine learning community [3, 4, 5].
Few works have adopted uncertainty estimation in context
of remote sensing [6]. However, existing distributional un-
certainty estimation works in remote sensing assume that the
deep learning model has access to out-of-distribution (OOD)
data while training the model and they introduce additional
terms in the loss function while training [6]. We observe two
pitfalls of such approach. Firstly, the access to OOD data dur-
ing training is counter-intuitive to the problem of OOD de-
tection and access to such OOD training data may be limited
by different practical constraints. Secondly, introducing ad-
ditional loss term significantly deviates the training objective
from its original task, i.e., to obtain satisfactory classification.
To alleviate these constraints, few works in the literature have
explored unsupervised detection of OOD samples, i.e., with-
out using any OOD sample during training phase [7, 8]. One
straightforward approach is to use the softmax value as an in-
dicator of OOD detection [9, 10]. However, mere softmax
scores are not reliable OOD predictor [7]. Further advancing
this concept, [11] postulates that unsupervised OOD detection
performance can be improved by constraining the representa-
tion of in-distribution samples in the feature space. Following
this, we propose an OOD detection model for remote sensing
classification tasks that work by projecting the in-distribution
samples into union of 1-dimensional subspaces. Due to the
compact representation of the in-distribution samples in the
feature space, OOD samples are much less likely to occupy
the same region as them.

The contributions of this work are as follows:

1. We introduce the concept of projecting in-distribution
samples into 1-dimensional subspaces in remote sens-
ing. Our work is one of the first works in remote sens-
ing on unsupervised OOD detection.

2. We experimentally show the effectiveness of the pro-
posed method on open set recognition task in UC
Merced dataset [12].
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Fig. 1. Proposed unsupervised OOD detection framework. The left hand side denotes the training process with only in-domain
samples while the right hand side shows the OOD detection process on test samples.

2. PROPOSED METHOD

A dataset of labeled remote sensing images D = {z;, y, };V:1
(labels belonging to L classes) can be characterized by
their underlying probability distribution p(x,y). Uncer-
tainties caused by finite size of the dataset are defined as
model/epistemic uncertainty [3]. Data/aleatoric uncertainty
arises from class overlap, label noise, and other complexities
in the data distribution [5]. On the other hand, distributional
uncertainty arises from the differences in training data dis-
tribution (p(x,y)) and test data distribution (p'(z,y)) [6].
Distributional uncertainty is very likely in remote sensing
due to presence of unseen classes in test data, i.e., not be-
longing to L classes seen during training. Other sources of
distributional shift include geographic and sensory differ-
ences. While previous remote sensing OOD detection works
use OOD samples (i.e., samples not belonging to p(z,y))
during training [6], in this work we propose to exclude use of
any such OOD samples during training. Our goal is to train a
neural network for classification using D, such that at the test
time the classifier produces classification label and also an
additional output on whether the test sample is OOD. Figure
1 shows a flowchart of the proposed method.

2.1. Intraclass compactness during training

OOD detection can be improved by representing the known
classes present in in-domain training data in a compact fea-
ture space, e.g., union of 1-dimensional subspaces [11]. The
idea is that if the known classes seen during training lie on
a compact feature space, the probability that the OOD sam-
ples also lie on the same feature spaces reduces drastically. A
deep network can be thought to be composition of two dif-
ferent entities: a feature extractor network (all layers before
the last fully connected layer) that generates a feature vector
fn from an input image x,, and the last fully connected layer
that maps the feature vector f,, to the L classes using weights
w; (I = 1,..,L). During training, cosine similarity can be

employed to make the feature vectors of each known classes
to lie on 1-dimensional subspace. Let us assume, the cosine
similarity between the feature vector f,, and the weights wy is
given by cos(0;,,). Then the probability of membership of the
feature vector n in class [ is given by:

- exp(|cos(01n)|)
"X, exp(|eos(90)])

6]

Using p;,, along with cross-entropy loss during training en-
sures that the feature vectors of each class [ are aligned to
their corresponding weight vector w; [11].

2.2. Maximizing interclass separation during training

While the use of cosine similarity ensures intraclass compact-
ness, we also need to maximize the interclass separation of
the known classes present in in-domain training data. In other
words, interclass similarity needs to be decreased among dif-
ferent classes in terms of cosine similarity. This can be en-
sured by enforcing w; to be orthogonal to each other [11].
This can be achieved by simply initializing the weights of last
fully connected layer (w;) as orthonormal vectors and freez-
ing this layer during training. While this maximizes inter-
class separation, this does not have any negative impact on
in-domain classification accuracy.

2.3. OOD detection

Any test sample can be classified as OOD depending on
whether it lies inside the region in feature space occupied by
any of the known classes. Let us assume that OOD samples
and samples from one of the known classes (/) are approxi-
mated by Gaussian distributions N (po, X0) and N (p, ),
respectively. The classification error probability between
these two classes can be reduced by simply increasing their
Bhattacharyya distance [13] that can be increased by making
N (ui,%;) compact. The distribution of in-domain class 1
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Table 1. UCM data set split into in-domain, OOD for train-
ing, and OOD for testing sets. Among compared methods,
only supervised DPN™™ uses the OOD training classes. Pro-
posed unsupervised method does not require them.

Setting 1 Setting 2
In-Domain  Beach, Forest, Golf
Classes Chaparral, Course,
Overpass, Harbor,
Baseball Tennis
Diamond, Court,
Intersec- Mobile
tion, Forest, Home Park,
Sparse Freeway,
Residential ~ Overpass
Out-of- Dense Res- Parking
Distribution  idential, Lot, Sparse
Classes Freeway, Residential,
Training Harbor, Chaparral,
Storage Buildings,
Tank, Airplane,
Medium Storage
Residential, Tanks,
Runway, Agriculture
Tennis
Court
Out-of- Agricultural, Medium
Distribution  Airplane, Residen-
Classes Build- tial, River,
Testing ings, Golf Beach,
Course, Baseball
Mobile Diamond,
Home Park, Runway,
Parking Dense Res-
Lot, River idential,
Intersection

can be made compact by representing the class using its first

®

singular vector vy~ of the training samples [11].

Given a test sample 2/, and its corresponding feature vec-
tor f!, an index can be computed as spectral discrepancy:

’ l
o)

2
TAR @

0, = mlin arccos(

where 6,, is the minimum angular distance of the test feature
vector from the first singular vector of any of the in-domain
classes. Larger 6,, implies the test sample is distant from
the in-domain classes and thus can be used as the uncertainty
score to detect the OOD samples.

Table 2. Quantitative comparison for OOD detection. While
supervised DPN™™ obtains best result, unsupervised pro-
posed method clearly outperforms the other unsupervised

methods.
Model Setting-1 | Setting-2 | Supervision
DPN™v 19816 95.27 Supervised
Softmax | 94.15 88.88 Unsupervised
ENN 86.32 90.53 Unsupervised
Proposed | 97.67 94.40 Unsupervised

3. EXPERIMENTAL VALIDATION

3.1. Dataset and settings

We use the UC Merced (UCM) dataset [12] that contains im-
ages of 256 x 256 pixels size and comprises of 21 different
classes, each having 100 samples. For evaluating the pro-
posed method, we use the open-set recognition task where test
set contains classes unseen during training. By dividing the
21 classes into three groups (in-domain, OOD training, OOD
test) of 7 classes each (Table 1), we prepare the Setting-1.
The in-domain dataset is further split randomly into 70% for
training and 30% for testing. Similarly, we also form Setting-
2 (Table 1). Our experiments use ResNet-50 architecture.

3.2. Compared methods

Following two methods are compared to the proposed method:

1. Supervised DPN™™ [14] that uses OOD training data.
While proposed unsupervised method cannot be ex-
pected to outperform this supervised method, it pro-
vides us an idea of how much the proposed unsuper-
vised method lags behind the supervised methods.

2. Unsupervised softmax [9] based method that does not
require any OOD training data.

3. Unsupervised Evidential Neural Network (ENN) [7]
that does not require any OOD training data. Here we
use the expected cross-entropy loss.

Performance is measured by Area under Receiver Oper-
ator Characteristic (AUROC). For compared methods, AU-
ROC is computed based on maximum probability [5].

3.3. Result

The OOD detection performance of different methods is tabu-
lated in Table 2. Performance is shown as 100 x AUROC. For
Setting-1, supervised DPN™™ obtains best result. However,
proposed method obtains similar result (only a difference of
0.49), in spite of being unsupervised. On the other hand, pro-
posed method outperforms the other unsupervised methods
by a large margin, i.e., ENN [7] by a difference of 11.35 and
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softmax-based method [9] by a difference of 3.52. Similar
result is obtained for Setting-2 where the proposed method
outperforms unsupervised ENN by a margin of 3.87.

While improving the OOD detection performance, it is
important to preserve the in-domain classification accuracy.
For Setting-1, the proposed method obtains an in-domain
classification accuracy of 99.21% in comparison 96.50%,
98.58%, and 98.75% obtained by ENN, softmax and DPNforw
respectively. Thus, the proposed method actually slightly im-
proves in-domain classification accuracy.

4. CONCLUSION

This paper proposed an unsupervised method for OOD detec-
tion. Unlike many other OOD detection method, the proposed
approach is simple to implement and does not require signifi-
cant modification of training loss functions. Our experiments
on the UC Merced dataset demonstrated the effectiveness of
the proposed method. While proposed unsupervised method
cannot outperform the compared supervised method, it only
lags behind by a little. On the other hand, proposed method
outperforms the other unsupervised methods by a significant
margin. Our future work will extend the method for OOD
detection on different geographic areas and different sensors.
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