Saha, Sudipan und Gawlikowski, Jakob und Nandy, Jay und Zhu, Xiao Xiang (2022) Compact Feature Representation for Unsupervised Ood Detection. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 3143-3146. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884481.
PDF
221kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9884481
Kurzfassung
Distributional mismatch between training and test data may cause the remote sensing models to behave in unpredictable manner, thus reducing the trustworthiness of such models. Most existing methods for out-of-distribution (OOD) detection rely on availability of OOD samples during training. However, access to OOD data during training is counter intuitive and may be impractical sometimes. Considering this, we propose an unsupervised OOD detection model that does not require training OOD data. The proposed method works by projecting the in-domain samples as a union of 1-dimensional subspaces. Due to the compact feature representation of in-domain samples, OOD samples are less likely to occupy the same feature space, thus they are easily identified. Experimental results demonstrate the capability of the proposed method to detect OOD samples.
elib-URL des Eintrags: | https://elib.dlr.de/193326/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Compact Feature Representation for Unsupervised Ood Detection | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884481 | ||||||||||||||||||||
Seitenbereich: | Seiten 3143-3146 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Out-of-distribution detection; OOD | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Datenwissenschaften Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:45 | ||||||||||||||||||||
Letzte Änderung: | 15 Jan 2025 14:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags