Gawlikowski, Jakob and Ebel, Patrick and Schmitt, Michael and Zhu, Xiao Xiang (2022) Explaining the Effects of Clouds on Remote Sensing Scene Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, pp. 9976-9986. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2022.3221788. ISSN 1939-1404.
PDF
- Published version
2MB |
Official URL: https://ieeexplore.ieee.org/document/9956865
Abstract
Most of Earth is covered by haze or clouds, impeding the constant monitoring of our planet. Preceding works have documented the detrimental effects of cloud coverage on remote sensing applications and proposed ways to approach this issue. However, up to now, little effort has been spent on understanding how exactly atmospheric disturbances impede the application of modern machine learning methods to Earth observation data. Specifically, we consider the effects of haze and cloud coverage on a scene classification task. We provide a thorough investigation of how classifiers trained on cloud-free data fail once they encounter noisy imagery—a common scenario encountered when deploying pretrained models for remote sensing to real use cases. We show how and why remote sensing scene classification suffers from cloud coverage. Based on a multistage analysis, including explainability approaches applied to the predictions, we work out four different types of effects that clouds have on scene prediction. The contribution of our work is to deepen the understanding of the effects of clouds on common remote sensing applications and consequently guide the development of more robust methods.
Item URL in elib: | https://elib.dlr.de/192669/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Explaining the Effects of Clouds on Remote Sensing Scene Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 15 | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2022.3221788 | ||||||||||||||||||||
Page Range: | pp. 9976-9986 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Classification, clouds, deep learning, explainability, remote sensing, robustness | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Data Science Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Deposited On: | 20 Dec 2022 09:38 | ||||||||||||||||||||
Last Modified: | 20 Dec 2022 09:38 |
Repository Staff Only: item control page