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Explaining the Effects of Clouds on Remote
Sensing Scene Classification
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Abstract—Most of Earth is covered by haze or clouds, imped-
ing the constant monitoring of our planet. Preceding works have
documented the detrimental effects of cloud coverage on remote
sensing applications and proposed ways to approach this issue.
However, up to now, little effort has been spent on understanding
how exactly atmospheric disturbances impede the application of
modern machine learning methods to Earth observation data.
Specifically, we consider the effects of haze and cloud coverage on
a scene classification task. We provide a thorough investigation of
how classifiers trained on cloud-free data fail once they encounter
noisy imagery—a common scenario encountered when deploying
pretrained models for remote sensing to real use cases. We show
how and why remote sensing scene classification suffers from cloud
coverage. Based on a multistage analysis, including explainability
approaches applied to the predictions, we work out four different
types of effects that clouds have on scene prediction. The contri-
bution of our work is to deepen the understanding of the effects of
clouds on common remote sensing applications and consequently
guide the development of more robust methods.
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I. INTRODUCTION

C LOUD coverage is detrimental to common remote sens-
ing applications, such as remote sensing scene classifi-

cation [1], [2], [3] and semantic segmentation [4], [5]. While
clouds are characterized in great detail [6], [7] and different
approaches for handling them have been investigated, less effort
has been spent to investigate what exactly its effects on remote
sensing applications are. The existing approaches range from
learning cloud removal for preprocessing [8], [9], [10], [11],
[12], [13] to familiarizing neural networks with clouds by in-
cluding cloud-covered observations in the training dataset, such
that the models learn to ignore clouds irrelevant to the task at
hand [3], [4], [14]. Such approaches that include cloudy images
in the training process are limited to samples with transparent
clouds or samples where the crucial features for classification are
not covered. Although recent work demonstrated that explicitly
performing cloud removal may improve model robustness [15],
the coverage of important features or the misinterpretation of
features induced by clouds still poses a significant problem for
remote sensing tasks sensitive to inter- and intraclass feature
differences [16], [17]. Furthermore, the majority of curated
optical satellite datasets are explicitly cleaned from clouds
and remote sensing models are subsequently (pre-) trained on
(predominantly) clear-view data [1], [2], [18]. This common
practice, however, is in contrast to the application of networks
typically trained on noncloudy datasets to data in the wild,
which is to a large extent polluted by haze or clouds [6]. Fig. 1
illustrates the possible negative effects of cloud cover on scene
classification. Fine-tuning such models on cloudy observations
would require the post-hoc collection of new data plus task-
related labels, which may thus be impracticable for the remote
sensing practitioner. Hence, the issue of cloud-agnostic networks
confronted with out-of-distribution data at test time commonly
persists. That is, classifiers trained on cloud-free data may in
practice still encounter samples significantly deviating from the
distribution of data that the model has been trained on.

In order to understand the causes of the experienced drops
in task performances [3], [14], we provide detailed insights
into how clouds affect every single part of the remote sens-
ing pipeline—from raw data to a model’s predictions. To our
knowledge, the only prior study explaining neural network’s
scene classifications focuses on clear data without taking the
effects of clouds into account [19]. In our work, we explain
the causes of overconfident miss-classifications resulting from
scenes fully or partially covered by clouds. Specifically, we
consider single-label scene classification on the SEN12MS
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Fig. 1. Two examples of the effect of clouds on single-label scene classifi-
cation. The visualization shows two examples of clear images, cloudy images,
and the corresponding predicted class probabilities. While in both cases, the
cloud-free image is classified correctly with respect to the ground truth, the
cloudy version is misclassified. In the upper example, much of the croplands
are obscured by cloud shadow, which causes the misclassification as a water
body with a high soft-max probability. In the lower example, the clouds cover
a large range of the water but keep a part of a city visible such that the sample
containing clouds is misclassified as Urban with a high conviction. The cloud
coverage of the samples is 19% and 77%, respectively. Although parts of the
images are still visible, the classifier’s predictions are misguided by the clouds
and the resulting shadows.

dataset [2]. We use the Sentinel-2 images of the dataset, which
have a resolution of 256× 256 pixels and are assigned to one
of 10 classes of land cover types. For cloud-covered samples,
we utilize the corresponding and co-registered observations of
the SEN12MS-CR dataset [20]. Our analysis is fourfold, as we
consider the effects of clouds on the following.

1) Data distribution, by describing the effects of clouds on
the statistics of the input dataset and how this affects
individual land cover types.

2) Classification performance, by evaluating the impact of
cloud coverage on a task performance level with respect
to the considered single-label classification task, including
individual class confusions.

3) Effects on the network output, by investigating the changes
in the network predictions and the capability to separate
cloudy samples from clear samples based on the network’s
output.

4) Feature importance and network focus, by analyzing
which parts of an image drive a classifier’s predictions
and how this changes in the presence of clouds.

In sum, the contribution of this work is to provide a more
thorough qualitative as well as quantitative analysis and in-
terpretation of the effects of clouds on remote sensing ap-
plications, to subsequently allow further research to handle
cloud-covered data more gracefully than currently feasible. The
code base for the presented results and experiments can be

found in our github repository: https://github.com/JakobCode/
explaining_cloud_effects.

II. DATA

A. Remote Sensing Data

To assess the effects of clouds on the scene classification
task, both cloudy observations and patchwise land cover class
annotations are required. For single-class labels and cloud-free
observations, this work builds on the SEN12MS dataset of
globally sampled Sentinel-1 and Sentinel-2 data [2], [21]. The
Sentinel-2 data correspond to the Level-1 C top-of-atmosphere
reflectance products. Semantic land cover annotations are given
by the MODIS-derived [22] simplified IGBP scheme of [21],
which consists of 10 different land cover types. For single-class
labels, we use the provided target values in [2] which, for any
sample, are given by the mode of its pixel-based simplified IGBP
land cover type map. For every 252 globally distributed regions
of interest, a large-scale observation is acquired within a given
meteorologically defined season for each of the three sensors and
collected semiautomatically via Google Earth Engine [23]. Each
region on average covers an area of approximately 52× 40 km2

land surface, equating to images of about 5200× 4000 pixels.
All full-scene observations are translated into the Universal
Transverse Mercator coordinate reference system. Afterward,
the images are sliced into patches of sizes 256× 256 pixels with
a stride of 128 pixels, such that neighboring patches have an over-
lap of 25% to 50%. Patches that contain invalid pixels, either due
to sensor noise or due to the coordinate transformation, are auto-
matically removed from the dataset. For cloud-covered data, we
utilize the compatible and co-registered SEN12MS-CR dataset
of cloudy Sentinel-2 data [20].1 The additional cloud-covered
full-scene observations are acquired in the same year and season
as their respective cloud-free counterparts to minimize surface
changes and are preprocessed analogously. For training and
testing data of this study, we use the intersection of both datasets’
splits, respectively. That is, for each considered testing sample a
cloud-free and a co-registered, potentially cloud-covered version
exists.

In order to compute statistics on the extent of cloud coverage
in the considered dataset, a pixelwise cloud map is required.
We utilize s2cloudless [24] to compute binary cloud masks. The
resulting distribution of cloud coverage on the considered test
split is depicted in Fig. 2. The statistics indicate that the complete
range of cloud coverage is present in the test split, from clear
view to fully obscured. The distribution exhibits a concentration
at high cloud coverage, implying an often impossible classifi-
cation task. For hard or even impossible classification tasks, the
predictions should be given with a larger entropy among the
predicted soft-max probability vectors.

B. Data Distribution

The distribution of land cover types in the test split is reported
in Fig. 3. The globally sampled land cover types are unbalanced,

1https://patrickTUM.github.io/cloud_removal
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Fig. 2. Histogram of test split samples per percentage of cloud coverage. All
extent of cloud coverage is present in the test split. The distribution exhibits a
concentration at high cloud coverage, implying a challenging or even infeasible
classification task.

Fig. 3. Histogram of the land cover class distribution in the original test
split of the SEN12MS dataset and the considered test split that is based on
the intersection with the cloudy SEN12MSCR dataset. The globally sampled
land cover types are unbalanced, with majority classes like Savanna while other
classes hardly occur.

with majority classes like Savanna while other classes (Snow,
Barren) hardly occur. The distribution of land cover in the
training split is comparable, which makes it representative of
the holdout data.

The bandwise statistics of each class’s spectral properties are
illustrated in Fig. 4. The illustrated band intensities are computed
by calculating the grand mean across all samples, averaging spa-
tial dimensions for each class and band separately. The statistics
show that the presence of clouds results in an average increase
in band intensities as well as a considerable increase in standard
deviations. That is, clouds result in land cover types being less
separable based solely on their spectral properties. Furthermore,
the considerable shift in the data distribution makes the behavior

Fig. 4. Bandwise spectral fingerprint of each land cover class. The figures
illustrate amplitude as a function of spectral bands and land cover type. Band
intensities are computed as the grand mean across all samples, averaging across
spatial dimensions for each class and band separately. The presence of clouds
results in an average increase in band intensities and standard deviation. This
indicates that, in the presence of clouds, land cover types become less separable
on the basis of their spectral fingerprint. (a) Statistics of cloud-free data. (b)
Statistics of 95% cloud-covered data.

of neural networks unreliable and sensitive to misinterpretations
caused by very confident but false predictions [25], [26].

III. SCENE CLASSIFICATION UNDER CLOUDY AND

NONCLOUDY CONDITIONS

A. Scene Classification Models

We investigate the scene classification performance of a
ResNet50 as well as a ResNet101 [27], a DenseNet121 [28],
a VGG-16, and a VGG-19 model [29], which were already
previously considered for this task [2]. Other than [2], we make
use of all Sentinel-2 bands to include atmospheric information,
which is of particular relevance in the presence of clouds. We
trained on the cloud-free SEN12MS training data and randomly
held out 10% of the training data for a validation set. The
models were trained for 30 epochs and the models with the
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Fig. 5. Classification performances on cloudy and cloud-free data. The eval-
uated metrics demonstrate comparable performances for the different architec-
tures considered in [2].

best performance on the validation set were saved during the
training. For the optimization procedure, we utilized the ADAM
optimizer [30] with a learning rate and weight decay of 10−5.
For the implementation, we extended the PyTorch [31] imple-
mentation provided by Schmitt and Wu.2 The trained networks
perform comparably to the baselines proposed in [2], which were
trained on the 10 surface-relevant bands of Sentinel-2 only.

B. Classification Performance

Our trained networks achieve an average accuracy score be-
tween 0.61 and 0.75 (see also Fig. 5), which is comparable
to the performance of the available networks pretrained on
only 10 bands of Sentinel-2 [2]. In the following parts, we
take the ResNet50 network as a representative use case for our
further evaluations. The network can be seen as representative
in a way that the presented findings based on the application
of GradCam hold for all the trained networks. In contrast to

2https://github.com/schmitt-muc/SEN12MS

Fig. 6. Performance of the ResNet50 architecture as a function of varying
ranges of cloud coverage. While accuracies are detriment with increasing cloud
coverage, the network’s confidence remains consistently high.

the subset of clear images, the networks achieve only average
accuracy scores between 0.26 and 0.32 on the cloudy test data.
This denotes a considerably detrimental effect of clouds on the
model’s classification performance, in line with the high cloud
coverage rates reported in Section II-A. In Fig. 5, the effects
of the clouds on the accuracy, the average accuracy, and the
confidence are illustrated. In general, the largest value within a
network’s soft-max output vector can be interpreted as the model
confidence. Networks where the predicted probability represents
the actual fraction of correct predictions are called calibrated
while uncalibrated networks lead to over- or underconfident
predictions [25]. We indicated the confidence by the average
over the highest probabilities received from the network for
the single samples. While there is a clear drop in classification
performances, there is considerably less decrease in confidence.

Complementary, Fig. 6 details the performance of the
ResNet50 network for different ranges of cloud coverage. The
analysis shows that classification performances decrease with
an increase in cloud coverage while confidence stays high.

To attribute the decrease in performance to specific land types,
we analyze the confusion matrices for clear and for cloudy
observations shown in Fig. 7(a) and (b), respectively. For the
cloud-free data, class 4 (Grasslands) is often confused with
other types, specifically with class 6 (Croplands). The presence
of clouds generally results in more misclassifications, but, in
particular, reinforces the bias of predicting class 5 (Wetlands).
Remarkably, especially the already harder-to-differentiate veg-
etation classes are much more distracted by the (partial) cloud
cover with a clear bias toward class 4 and class 6.

IV. ANALYSIS OF CLOUD EFFECTS

A. Separability and Out-of-Distribution Analysis

The eventual occurrence of clouds poses the question of
whether a given set of samples can be divided into cloudy and
noncloudy images, solely based on a neural network’s output.

https://github.com/schmitt-muc/SEN12MS
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Fig. 7. Confusion matrices of the cloudy and cloud-free test samples resulting
from the intersection of SEN12MS and SEN12MS-CR. The true class labels are
plotted versus the predicted class labels, with the row-normalized probabilities
color-coded. Specifically, class 4 (Grasslands) is often confused with others, in
particular with class 6 (Croplands). The presence of clouds generally results in
more misclassifications, but in particular reinforces the bias of predicting class 6
(Croplands). Remarkably, the already harder-to-differentiate vegetation classes
are much more distracted by the (partial) cloud cover with a clear bias toward
classes 4 and 6. (a) Confusion matrix on cloud-free data. (b) Confusion matrix
on cloud-covered data.

This can be seen as a case of Out-of-Distribution detection,
which is a broadly studied topic in the field of machine learn-
ing [25], [32] and also applied in different remote sensing sce-
narios [26]. In order to evaluate the out-of-distribution detection
performance of a classifier, one in general evaluates how well
metrics can be used to separate a given test dataset into so-called
in-distribution samples (in our case the noncloudy samples) and
out-of-distribution samples (in our case the cloudy samples).

For every classification neural network, one can apply different
metrics on the logit values as well as on the predicted probability
vector. The motivation behind this analysis is driven by findings
that predictions for data points from unknown data distributions
might give a very confident prediction, but often differ consid-
erably in the pure network output, the so-called logits [26]. An
ideal model confronted with cloudy samples would express its
uncertainty for example by a low confidence value or a high
entropy in the resulting probability vector. Also, the features
derived from a cloudy sample would fit relatively bad to the
possible classes, and therefore, the predicted logit values should
be small for all classes. Popular metrics are for example the
maximum probability (or confidence), the mutual information,
the entropy, the sum of the logit values (log-sum), and the pre-
cision. The precision is motivated by the Dirichlet distribution
(a multivariate generalization of the Beta distribution) and can
be interpreted as a description of the certainty on the predicted
probability vector [25]. The precision is computed as the sum of
the exponential of the logit values and the larger the precision
value, the less variation in the prediction is assumed. In this
article, we investigate the separability of cloudy and noncloudy
samples based on the maximum probability, the entropy, the
mutual information, the sum of the logit values, and the precision
value.

B. Grad-CAM for Saliency Map Computation

Complementary to analyzing the effects of clouds on the scene
classification performance via established statistics, we use
Gradient-weighted Class Activation Mapping (Grad-CAM) [33]
to inspect the workings of the considered classifier when facing
noisy optical data. Grad-CAM is a popular method to analyze
which input region of an image contributed most to a given
prediction. Grad-CAM can be applied post-hoc to a trained
network to provide heat mapsMc of the models’ attention on the
image conditioned on a specific target class c, so-called saliency
maps. To do so, the derivative δyc

δAk
of the output logit yc for

the conditioned class c with respect to the feature maps Ak is
computed. The gradients are then global average pooled across
the spatial dimensions H and W to obtain mapwise attention
weightings

αc,k =
1

H ×W
Σi=1,...,HΣj=1,...,W

δyc
δAk,i,j

which can be interpreted as the attribution of feature map Ak to
drive the classification of c. The feature maps Ak at that layer
are averaged across all output channels and the gradients for
each channel are weighted by the respective layer’s activations
αc,k in a simple linear combination. On the resulting pixelwise
attribution of activations, a rectified linear unit σ is applied

Mc = σ(Σkαc,kAk)

and the saliency map Mc is upsampled via bilinear interpolation
to the dimensions of the input image. The resulting attention
map specifies which areas in a given input to the network drive
its classification as a scene of class c. We utilize Grad-CAM to
analyze which regions of a land cover are salient in classifier’s
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Fig. 8. Separability of samples from the cloudy and from the clear dataset,
based on the PR and receiving-operating-characteristic (ROC) of different
metrics applied to the output of different network architectures proposed in [2].
The evaluation shows that cloudy and noncloudy samples affect the output of
different architectures differently. The best separability is reached with the
VGG16 and the ResNet50 architecture and the mutual information metric,
followed by the ResNet101 and the DenseNet121 architectures.

receptive fields, and how the presence of clouds affects these
saliency maps.

V. RESULTS

A. Effects on the Network Output

This section details the effects of clouds on the network
output, including the predictions before applying the soft-max
function to compute the categorical probability vectors. We
utilize the metrics defined in Section IV-A and analyze the
separability of the set of cloudy samples (with a coverage of
at least 10%) to their cloud-free pairings and present in Fig. 8
the outcomes for the considered metrics in terms of the average
under the curve of precision recall (PR) as well as the receiver
operating characteristic curve (ROC). There is an effect of the
different architectures on separability, dependent on the con-
sidered metric. Overall, separability works best for the mutual
information and the entropy metric and the VGG16 architecture,
followed by the ResNet50 and the DenseNet121 architecture. It
is important to realize that a perfect separability, i.e., a value of
100, is unrealistic to reach in our setup, since several samples
are only covered by clouds on a small fraction or do not contain
any thick clouds at all (cmp. Fig. 2).

B. Feature Importance and Network Focus

To further analyze what drives misclassifications in the pres-
ence of clouds, we apply Grad-CAM to compute saliency maps
as detailed in Section IV-B. Within our investigation, we encoun-
tered four different manners in which clouds affect the network’s
attention, presented in the following.3

3Please note that these chosen examples are exemplary in the sense that their
class labels and the classifier’s predictions are indeed representatives according
to the land cover distribution of Fig. 3 and the confusion matrices of Fig. 7: The
analyzed cases feature prominent land cover types such as Grassland, Croplands,

Fig. 9. (a) Clear and (d) 77% cloud-covered image with ground truth class
water corresponding saliency maps with respect to the (b) and (e) classes water
and (c) and (f) urban. In (g), the network’s predictions are shown. This is an
example of data where clouds partially cover the image such that homogeneous
features are covered but “small feature classes” are still visible. Specifically, the
few small buildings visible on the very edge of the image, and the small clouds,
cause this confident misclassification.

1) Clouds Partially Cover the Image Such That Homoge-
neous Features are Covered But “Small Feature Classes” are
Still Visible: Depending on the type of cloud coverage, a few
clear features can already be enough to make the network predict
a specific class with a high confidence value. Especially the ur-
ban class is an example of such behavior. Complementing Fig. 1
with the corresponding Grad-CAM results, Fig. 9 illustrates the
saliency maps of a water-type land cover scene for both cloudy
and cloud-free views. Evidently, the correct Water classification
focuses on the whole water body, whereas the Urban mispredic-
tion is driven by the peripheral urban parts not covered by clouds.
In both cases, the scenes are (in-)correctly classified at very high
confidence, as shown in Fig. 1. Interestingly, the confidence of
the network on the cloudy sample prediction is 86%, compared
to 90% for the water prediction on the clean image.

Urban, and Forest—which, according to Fig. 2, make up a large proportion of
the overall test data. Moreover, the considered cases are representative of salient
changes to the network’s performance. For instance, in the presence of clouds, the
TPR of classifying Forest, the ground truth class in Fig. 13, drops drastically from
0.76 to 0.24. Meanwhile, the FPR to confuse Forest with croplands increases
from 0.01 to 0.25, as shown in Fig. 7. As another example, Fig. 11 illustrates a
confusion between the ground truth Grassland and the prediction of Cropland.
In the presence of clouds, the FPR of this confusion is at 0.48, which is twice as
large as the TPR of predicting Grassland correctly as shown in Fig. 7(b).
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Fig. 10. (a) Clear and (d) 19% cloud-covered input images with ground truth
class croplands and corresponding saliency maps for the (b) and (e) classes
croplands and (c) and (f) water. In (g), the network’s predictions on the clear
and on the cloudy image are visualized. The illustrated example shows the
case of large cloud shadow regions causing a confident misclassification. It
is representative in featuring the majority class “croplands,” constituting a large
part of our dataset.

2) Structures are Hidden by Shadows: Even clouds that
cover an image only partially on a small fraction can still have a
considerable effect on the image caused by their shadow. Optical
sensors are sensitive to illumination and large shadows impact
the illumination. Based on this, shadows can hide structures and
characteristics on the floor, leading to a more homogeneous-
looking area. In Fig. 10, a very inhomogeneous side is visualized.
As shown in Fig. 1, the confidence in the predictions is hence
not very large. In contrast to this, the cloudy version covers
most of the picture in a very dark monotonic-looking side. As
a result, the network predicts the sample as a water body with
high confidence. While the saliency map for the clear image
shows several single regions that caused the correct prediction,
the saliency map of the cloudy version clearly shows that the
shadow caused the false prediction as a water body.

3) Small Clouds and Their Shadows Make the Ground Look
Less Homogeneous: Clouds and their shadows cannot only
cause homogeneity but also make images look more inhomoge-
neous. Especially many small clouds with many corresponding
shadows make the image indicates more structure in the land side
as their actually is. In Fig. 11, the cloud-free patch is accurately
classified as “grassland.” The cloudy patch of 40% cloud cover-
age is misclassified as “croplands.” The corresponding saliency

Fig. 11. (a) Clear and (d) 40% cloud-covered input images with ground truth
class grasslands and corresponding saliency maps for the (b) and (e) classes
grasslands and (c) and (f) croplands. In (g), the network’s predictions are shown.
This is a case of small clouds and their shadows making the ground look less
homogeneous. Altogether, one can clearly see that the intensity of cloudy pixels
and their high-contrast neighborhood capture the network’s attention and result
in misclassification. The shown misclassification is representative for many
cases, as croplands are erroneously predicted twice as often as the correct class
of grassland in the presence of clouds, according to Fig. 7(b).

maps clearly show that while for the correct prediction on the
clear image, most of the image is taken into account, the false
prediction on the cloudy image is based mainly on cloudy and
shadow parts of the image.

4) Homogeneous and Semitransparent Clouds Make Ground
Look More Homogeneous: Besides the above-considered non-
transparent clouds with clear shapes and shadows, there also
exist semitransparent and very homogeneous clouds. In Figs. 12
and 13, two examples are shown where these types of clouds lead
to a wrong water and a wrong croplands prediction, respectively.

VI. DISCUSSION

Following the four levels of analysis provided in Section V,
this section communicates an interpretation of the observed
results. The provided interpretations follow the preceding four
stages of analysis to detail our views on the effects of clouds,
from the raw data to network decisions and clarify how each
step relates to one another.
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Fig. 12. (a) Clear and (d) 100% cloud-covered input images with ground
truth class savanna and corresponding saliency maps for the (b) and (e) classes
savanna and (c) and (f) water. In (g), the network’s predictions are shown. The
shown samples represent the case of homogeneous and semi-transparent clouds
making ground appear more homogeneous. Altogether, one can clearly see that
the lower contrast and the dark water shimmering through the clouds result in
the water prediction.

1) Distribution Shift: As presented in Section II-B, the pres-
ence of clouds changes the bandwise data statistics. That is, an
overall shift in the data distribution is observable. Distribution
shifts have previously been shown to make the behavior of neural
networks unreliable and sensitive to misinterpretations caused
by very confident but false predictions [25], [26]. Moreover,
the bandwise standard deviations increased considerably. This,
in return, causes the individual land cover classes to be less
separable on their spectral statistics alone. While convolutional
neural networks do also incorporate spatial information via local
context, the spectral statistics of a sample become less indicative
of its class belongings. Finally, preprocessing pipelines based
on statistics priorly computed on the cloud-free training data (as
in [2]), are no longer appropriate as they do not match the cloudy
data distribution and thus do not normalize the cloud-covered
data.

2) Classification Performance and Overconfidence: The per-
formance and confidence metrics presented in Section III-B in-
dicate that the classifier is oblivious to the presence of previously
unencountered clouds and their effects caused by the shift in the
input data distribution as described in Section II-B. Interestingly,
the drop in the accuracy is not uniformly distributed, but the
confusion matrix in Fig. 7(b) shows a bias toward particular

Fig. 13. (a) Clear and (d) 87% cloud-covered input images with ground truth
class forest and corresponding saliency maps for the (b) and (e) classes forest
and (c) and (f) croplands. In (g), the network’s predictions are shown. This is a
case of homogeneous and semitransparent clouds making ground appear more
homogeneous. Specifically, some small regions with structured clouds result
in the croplands prediction. This sample is represented as, in the presence of
clouds, the correct classification of “forest” drops to a third of the original rate.
Moreover, the probability of misclassifying “forest” as “croplands” outgrows
the chance of a correct prediction, as analyzed in Fig. 7.

classes. Moreover, this bias is not toward the class with the most
training samples (savanna). In addition to the biased decrease in
classification performance, the classifier’s high overconfidence
in the cloudy samples is an undesirable effect caused by clouds.
Even though the data are very different from the data known
from the training (as seen in the band statistics), the network
still gives predictions with high confidence. This behavior is
in line with prior observations that neural networks are overly
confident in their predictions even in the presence of noise and
on changing data domains and distributions [25], [34].

3) Cloudy Noncloudy Separability: Even though the clouds
have such a strong effect on the classification performance,
the results in Section V-A showed that the separation between
cloudy and noncloudy images based on different metrics on
the network output is only possible to a certain extent. Even
the most discriminative network architectures and measures can
only separate in-distribution from out-of-distribution samples in
roughly two-thirds of the considered cases. This behavior was
also observed when the threshold for the cloud coverage was
increased from 10% to a larger value or even to 100%. Besides
this, the classifiers and metrics also differ in the extent to which
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Fig. 14. Violin plot visualization of the pixelwise saliencies with respect to the
correct class over the noncloudy (left) and cloudy (right) test data. The violin
bodies indicate a smoothed empirical probability distribution, per class. The
mean and the median intensities for each class are given by the red (mean) and
the green (median) line, respectively. For the clear case, the plots clearly show
classwise differences in the average number of pixels and intensities contributing
to the prediction. For the cloudy case, they show a reduction of saliency for all
classes but the water class.

they can grasp differences between representations of cloudy
and cloud-free images. Especially the performances based on
the precision value and the maximum probability underline the
findings that networks are overly confident and further support
the interpretation that the scene classifier is oblivious to the
presence of previously unencountered clouds.

4) Outliers as Distractors: As evidenced by the Grad-CAM
analysis in Section V-B, cloud coverage poses an obstacle to
land cover classification in four different kinds: First, clouds
partially cover the image such that large areas are covered but
relatively irrelevant “small feature classes” may still be visible.
Second, otherwise apparent structures may be hidden by cloud
shadows. Third, small clouds and their shadows make the ground
look less homogeneous. Fourth, transparent clouds lead to a
different representation of the (often already on clear images
hard to differentiate) classes of land cover. These four cases can
be directly related to the shift in the confusion matrix represented
in Fig. 7(b), as, for example, the large shift from water to urban
classes can be explained and the interplay of houses and water
was presented as shown in Fig. 9. Moreover, samples across all
four cases highlight that the network’s spatial attention often
shifts toward clouds, their shadows, or the transition between
both. That is, outstandingly bright, very dark, or high-contrast
areas often coincide with a focus of attention. As these are often-
times entailed by the presence of clouds, we interpret that out-
of-distribution image intensities function as a distractor. In sum,
clouds and their shadows distract classifiers on a macroscale by
obscuring large areas—but also on a per-pixel level, as cloud
or cloud-shadow induced intensity changes equally distract the
classifier from the actual land cover. Moreover, the evaluation
of the pixelwise saliencies in Fig. 14 shows that all areas of the
water land cover type contribute to a relatively high relevance. In
contrast, for the more feature-based urban class, the majority of
the class is not that relevant for the prediction. At the same time,

the values for the urban saliency sometimes reach larger values
than for all other classes. Interestingly, an equivalent but less
significant trend of larger areas of an image into account also
appears for the forest and the shrubland class. For the Wetland
class, the relevance is not that concentrated on single values but
seems to also take a variety of areas into account. Those classes
also have the largest relative drop in the true positives, indicating
that the coverage of clouds harms these types of classes more
than those, which focus on smaller areas.

Hence, clouds and shadows covering parts of an image and
hiding information for specific areas affect the scenewise clas-
sification of regions differently. When comparing the pixel-
wise saliency of cloud-free data to one of cloudy samples, a
clear decrease in saliency is visible while the outliers become
more extreme. That is, on average, a smaller fraction of a
scene’s pixels contributes to its classification in the presence
of clouds, except for a few extrema. This finding validates
the hypothesis that less information covering multiple pixels
leads to class prediction but mainly local information. This
is also what the presented saliency maps, except of the false
water prediction in Fig. 10, indicate. Fewer pixels driving a
classification are in contrast to the majority principle that the
most prominent class (i.e., the one covering the largest area)
defines a scene’s label. The only exception from the trend of
shrinking saliencies is the Water class, for which larger areas
of cloud shadows in other scene types tend to be misclassified
as water. Altogether, the presented analysis clearly shows that
conventionally (pre-)trained networks are not fit for domain
shifts in data common in remote sensing. Specifically, the
derived features cannot be used to give a strong idea of the
underlying class, even if only parts of the image are covered by
clouds.

Overall, our multistage analysis reveals that the effects of
clouds on remote sensing applications manifest in many different
aspects of the pipeline, from the raw data to the information a
trained network extracts from these images. As the visualiza-
tions and evaluations of the Grad-CAM images underlined, the
structure caused by clouds and their shadows contain misleading
information leading to very confident but false predictions.

While our analyzed data comprise a large cohort of globally
distributed regions acquired through several seasons that should
be sufficiently heterogeneous and representative, our analysis
may nonetheless be dependent on, e.g., the choice of datasets
and cloud detection algorithms. For instance, future work may
conduct our analysis focused on a single-country level, e.g., on
the dataset in [35]. Moreover, recent publications have provided
novel large-scale datasets for cloud detection or removal in
time series [12], [13], [36], which may serve as an extended
version of our analysis. With respect to the cloud detector algo-
rithm, s2cloudless was chosen for being commonly deployed,
easily applicable, and performing well [37], [38]. However,
many alternative approaches exist [35], [39], [40], [41], [42],
whose variable sensitivity thresholds may result in qualitatively
different cloud masks and thus different downstream analysis
results. The chosen s2cloudless algorithm is reported to show a
fair “balance (within 10%) between commission and omission
errors” [38], which may avoid any one-sided biases to either
false alarms or misses of clouds in our subsequent analysis.
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VII. CONCLUSION

With over 50% of our planet’s surface covered by clouds at
any point [6], haze and clouds pose a considerable obstacle to
the continuous monitoring of Earth. In this work, we investi-
gated in detail the effects of clouds on a deep neural network
performing remote sensing scene classification. To start with,
clouds considerably alter the spectral characteristics of data
and make individual land cover types less separable from one
another. In terms of performance, we observed a considerable
drop in overall classification accuracy to almost half of the rates
at clear views. A confusion matrix analysis revealed that existing
biases toward predicting certain classes are reinforced in the
presence of clouds. Even though the network remains highly
confident in its predictions, it cannot separate between cloud-
free and cloud-covered observations—indicating the classifier’s
unawareness of clouds. Finally, we complemented the reported
statistics with a qualitative analysis of the classifier’s attention
maps. The saliency maps highlighted that clouds distract the
network from the actual land cover surface. That is, rather than
focusing on the actual land cover, previously unseen noise is
so salient that it becomes the focus of the classifier’s attention.
These insights contribute to a better understanding of the effects
of clouds on remote sensing applications and may consequently
guide the future development of more robust models. We plan
to continue our research and develop a methodology that is
more robust to the effects of outliers and noise detailed in this
contribution. For future approaches, evaluating the distribution
of image regions relevant to the prediction is an interesting way
to identify misconceptions and misclassifications. In addition,
training methods that incorporate clouds and shadowy regions
and can express the uncertainty and the lack of knowledge due
to obscured parts of the image are a promising route to more
robust approaches in the future.
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