elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Explaining the Effects of Clouds on Remote Sensing Scene Classification

Gawlikowski, Jakob und Ebel, Patrick und Schmitt, Michael und Zhu, Xiao Xiang (2022) Explaining the Effects of Clouds on Remote Sensing Scene Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, Seiten 9976-9986. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2022.3221788. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://ieeexplore.ieee.org/document/9956865

Kurzfassung

Most of Earth is covered by haze or clouds, impeding the constant monitoring of our planet. Preceding works have documented the detrimental effects of cloud coverage on remote sensing applications and proposed ways to approach this issue. However, up to now, little effort has been spent on understanding how exactly atmospheric disturbances impede the application of modern machine learning methods to Earth observation data. Specifically, we consider the effects of haze and cloud coverage on a scene classification task. We provide a thorough investigation of how classifiers trained on cloud-free data fail once they encounter noisy imagery—a common scenario encountered when deploying pretrained models for remote sensing to real use cases. We show how and why remote sensing scene classification suffers from cloud coverage. Based on a multistage analysis, including explainability approaches applied to the predictions, we work out four different types of effects that clouds have on scene prediction. The contribution of our work is to deepen the understanding of the effects of clouds on common remote sensing applications and consequently guide the development of more robust methods.

elib-URL des Eintrags:https://elib.dlr.de/192669/
Dokumentart:Zeitschriftenbeitrag
Titel:Explaining the Effects of Clouds on Remote Sensing Scene Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gawlikowski, JakobJakob.Gawlikowski (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ebel, Patrickpatrick.ebel (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schmitt, MichaelMichael.Schmitt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:15
DOI:10.1109/JSTARS.2022.3221788
Seitenbereich:Seiten 9976-9986
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Classification, clouds, deep learning, explainability, remote sensing, robustness
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Jena , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Datenwissenschaften
Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Haschberger, Dr.-Ing. Peter
Hinterlegt am:20 Dez 2022 09:38
Letzte Änderung:20 Dez 2022 09:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.