Knauer, Markus Wendelin and Albu-Schäffer, Alin Olimpiu and Stulp, Freek and Silverio, Joao (2025) Interactive incremental learning of generalizable skills with local trajectory modulation. IEEE Robotics and Automation Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LRA.2025.3542209. ISSN 2377-3766.
![]() |
PDF
- Postprint version (accepted manuscript)
5MB |
Official URL: https://dx.doi.org/10.1109/LRA.2025.3542209
Abstract
The problem of generalization in learning from demonstration (LfD) has received considerable attention over the years, particularly within the context of movement primitives, where a number of approaches have emerged. Recently, two important approaches have gained recognition. While one leverages via-points to adapt skills locally by modulating demonstrated trajectories, another relies on so-called task-parameterized (TP) models that encode movements with respect to different coordinate systems, using a product of probabilities for generalization. While the former are well-suited to precise, local modulations, the latter aim at generalizing over large regions of the workspace and often involve multiple objects. Addressing the quality of generalization by leveraging both approaches simultaneously has received little attention. In this work, we propose an interactive imitation learning framework that simultaneously leverages local and global modulations of trajectory distributions. Building on the kernelized movement primitives (KMP) framework, we introduce novel mechanisms for skill modulation from direct human corrective feedback. Our approach particularly exploits the concept of via-points to incrementally and interactively 1) improve the model accuracy locally, 2) add new objects to the task during execution and 3) extend the skill into regions where demonstrations were not provided. We evaluate our method on a bearing ring-loading task using a torque-controlled, 7-DoF, DLR SARA robot.
Item URL in elib: | https://elib.dlr.de/212796/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Additional Information: | More information and video: https://github.com/DLR-RM/interactive-incremental-learning | ||||||||||||||||||||
Title: | Interactive incremental learning of generalizable skills with local trajectory modulation | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 13 February 2025 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Robotics and Automation Letters | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/LRA.2025.3542209 | ||||||||||||||||||||
Editors: |
| ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 2377-3766 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Incremental Learning, Imitation Learning, Continual Learning | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||
DLR - Research theme (Project): | R - Factory of the Future synergy project [RO] | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) Institute of Robotics and Mechatronics (since 2013) > Cognitive Robotics | ||||||||||||||||||||
Deposited By: | Knauer, Markus Wendelin | ||||||||||||||||||||
Deposited On: | 21 Feb 2025 18:06 | ||||||||||||||||||||
Last Modified: | 16 May 2025 10:22 |
Repository Staff Only: item control page