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Interactive incremental learning of generalizable
skills with local trajectory modulation

Markus Knauer 1,2, Alin Albu-Schäffer 1,2, Freek Stulp 1 and João Silvério 1

Abstract—The problem of generalization in learning from
demonstration (LfD) has received considerable attention over the
years, particularly within the context of movement primitives,
where a number of approaches have emerged. Recently, two im-
portant approaches have gained recognition. While one leverages
via-points to adapt skills locally by modulating demonstrated
trajectories, another relies on so-called task-parameterized (TP)
models that encode movements with respect to different coordi-
nate systems, using a product of probabilities for generalization.
While the former are well-suited to precise, local modulations,
the latter aim at generalizing over large regions of the workspace
and often involve multiple objects. Addressing the quality of
generalization by leveraging both approaches simultaneously has
received little attention. In this work, we propose an interactive
imitation learning framework that simultaneously leverages local
and global modulations of trajectory distributions. Building
on the kernelized movement primitives (KMP) framework, we
introduce novel mechanisms for skill modulation from direct
human corrective feedback. Our approach particularly exploits
the concept of via-points to incrementally and interactively 1)
improve the model accuracy locally, 2) add new objects to the
task during execution and 3) extend the skill into regions where
demonstrations were not provided. We evaluate our method on a
bearing ring-loading task using a torque-controlled, 7-DoF, DLR
SARA robot [1].

Index Terms—Incremental Learning, Imitation Learning, Con-
tinual Learning

I. INTRODUCTION

TASK-PARAMETERIZED Gaussian mixture models (TP-
GMMs) [2] are a popular approach to encoding the

variations and correlations across multiple demonstrations,
facilitating skill generalization. Unlike earlier attempts such
as dynamic movement primitives (DMPs) [3] and other proba-
bilistic models for movement primitives like Gaussian mixture
models (GMMs) [4], TP-GMMs are better suited for adapting
to new situations, including those involving multiple objects
[5]. TP-GMMs build local representations of demonstrated
trajectories with respect to objects of interest, represented by
their poses. They then generalize the demonstrations to new
situations, by formulating generalization as a fusion problem,
where each object’s local model is weighed against the others
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Fig. 1: By demonstrating on the same table (top row), users inadvertently
introduce low variance along the vertical axis in multiple demonstrations of a
ring-loading task, which prevents TP-GMM [2] from generalizing to different
table heights (bottom row).

in a continuous fashion through a product of Gaussians,
generating a trajectory distribution for the robot to track.
Despite their adaptability, TP-GMMs are prone to modeling
errors, particularly when imperfect demonstrations introduce
ambiguity between objects, which affects generalization when
task conditions change, see Fig. 1. In addition, introducing new
objects into a learned skill (by defining new task parameters),
requires providing new demonstrations and training a new
model, when often simple modulations of the original model
would suffice. In this paper, we propose to alleviate these
issues via interactive imitation learning [6]. We do this by
modulating local models from physical user feedback, both im-
proving the generalization of taught skills – by locally correct-
ing errors – and permitting their incremental re-use. Notably,
adaptations are applied only locally, with respect to objects
of interest, yielding an updated skill model which accurately
generalizes new behaviors to new situations. We argue that in
order to modulate skills locally, we require an underlying skill
representation that 1) encodes trajectory distributions with both
aleatoric and epistemic uncertainties—randomness in data and
model knowledge gaps [7], and 2) allows for trajectory modu-
lation trivially when modifications of the original demonstra-
tions are required. To achieve this we build on the kernelized
movement primitives (KMP) framework [8] (see Sec. III for a
background review). Although task-parameterization of KMPs
is briefly introduced in [8], the adaptation of local models has
received little attention. We address the adaptation of local
models by investigating when, where and how to add via-
points. The result is an interactive learning framework of task-
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Fig. 2: Approach overview. Users provide demonstrations fitted locally to
different objects using KMPs (top). The resulting model, TP-KMP, is in-
teractively adjusted to improve generalization and augment the demonstrated
skill. An interactive strategy to add via-points locally, with respect to different
objects, is the cornerstone of our approach, enabling correction of skills
(center-left), addition of new objects (center-right), and skill augmentation
(bottom).

parameterized skills with local trajectory modulation (Sec. IV)
that 1) permits the interactive correction of model imperfec-
tions locally, such that corrections ‘move’ with objects, 2)
allows the definition of new task parameters interactively,
when tasks change to require new/different objects and 3)
ensures compliant interaction when extending skills beyond
their initial duration by regulating stiffness based on the
epistemic uncertainty, while simultaneously adding via-points.
Figure 2 provides an overview of our approach. Our experi-
mental evaluation (Sec. V) shows that our framework permits
users to incrementally build on an initial model of a skill by
interactively correcting errors and adding new behaviors in any
task phase. We discuss the results and provide conclusions in
Sec. VI–VII. An overview of the notations and acronyms used
is provided in the Additional Material A–B.

II. RELATED WORK

A. Task-parameterized GMMs and variations

Several works have emerged both to address limitations of
[2] and introduce new features. In [9] Huang et al. propose to
associate confidence factors to the different task parameters,
allowing to regulate their influence during task execution. Zhu
et al. [10] introduce an algorithm to generate new data arti-
ficially by sampling from underlying models and re-training
the models to improve generalization. Building on [9], Sun et
al. [11] and Sena et al. [12] introduce strategies to optimize
frame relevance given task objectives. Similar re-optimization
is required in incremental approaches for TP models, such as
[13], which also relies on an underlying GMM. Recently, Yao
et al. [14], propose to replace the GMM representation by a
ProMP [15], introducing the idea of improving generalization
by modulating TP models with via-points. However, via-
points are defined globally and projected locally on all frames.
This creates ambiguity when task parameters change, since
all frames have high confidence on the via-point positions,
requiring the re-definition of via-points every time a task

changes. Although these approaches improve generalization in
scenarios with non-moving objects, they do not permit adding
new task parameters to existing models and, most importantly,
they do not provide interactive capabilities to incrementally
refine skills.

B. Interactive imitation learning

The emergence of interactive imitation learning [6] high-
lights the importance of complementing the strengths of clas-
sical machine learning methods with interactive mechanisms
when acquiring skills in the real world. Along these lines,
Franzese et al. [16] introduce the concept of interactive task-
frame selection, focusing on object-centered skills in a similar
spirit to TP approaches, despite not contemplating the learning
of trajectory distributions. Interactive incremental learning
approaches in LfD include state-based representations [17]–
[21], where skills are learned as time-independent autonomous
systems and modulated directly in task space by introducing
new state-action pairs. Huang et al. [8] introduced KMPs,
aiming for a probabilistic representation that can be adapted
to pass through new via-points after the initial demonstration
phase. Despite introducing a TP formulation of KMP, the
authors do not explore the combination of interactive via-
point-based modulation with object-centered representations.

C. Our approach and contribution

We extend on the combination of [2] with KMP-based local
trajectory representations, referred to as TP-KMP, leveraging
the intuitive addition of via-points after initial demonstration
by specifying their location and covariance, as proposed in
[8]. In previous work [14], via-points were added globally
for obstacle avoidance, necessitating re-demonstration when
objects were moved. In contrast, we add via-points locally,
allowing them to move with the objects. Defining via-points
with low covariance increases the importance of the corre-
sponding objects in local models, enhancing the relevance of
these via-points in new scenarios. Our framework uses this
property, incorporating human feedback - often investigated
for trajectory modulation [22] - to specify via-point locations.
Building on this insight, we further develop an interactive
learning framework for defining new task parameters and
improving skills incrementally, by leveraging the capabilities
of KMPs to encode both aleatoric and epistemic uncertainties
[7], [23]. Uncertainty quantifications, important in robotics
[24]–[26], allow the definition of robot behaviors through
uncertainty-aware stiffness regulation strategies [27], [28]. In
comparison to other approaches like [29], we rely on both
epistemic and aleatoric uncertainties in a principled manner
(Sec. IV-D).

In the domain of incremental learning, approaches like
[30], [31], despite allowing for corrections, are either not
task-parameterized or require large amounts of training data,
making them less intuitive for novice users. ILoSA [20] or
its extended version [32] provide a way to apply partial
correction demonstrations locally. However, due to the missing
aleatoric uncertainty a combination of local models is only
possible using a heuristics instead of an uncertainty-based
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TABLE I: Comparison of related task-parameterized approaches. Our ap-
proach models both uncertainties and offers multiple possibilities to adapt
motion primitives.

Aleatoric
uncertainty

Epistemic
uncertainty

Global
via-point

Local
via-point

New
frames

Interactive
modulation

TP-GMM/GMR [2] ✓ - - - - -
TP-ProMP [14] ✓ - ✓ - - -
vanilla TP-KMP [8] ✓* ✓* ✓ - - -
TP-ILoSA [32] - ✓ ✓** ✓** - ✓
Our approach ✓ ✓ ✓ ✓ ✓ ✓

* available jointly, not used for interaction
** Via-points specified simply as new datapoints through corrections

fusion like the one used in TP-KMP. In addition, using via-
points instead of correction demonstrations is more efficient
since the correction only has to be given once.

Finally, compared to DMPs [3], which offer spatial and
temporal invariance for movement scaling, our approach addi-
tionally provides a greater flexibility by a task-parameterized
formulation [2]. This enables continuous adaptation to mul-
tiple objects and purposeful interactions throughout the task,
surpassing the fixed goal attractor limitations of DMPs.

In Table I we compare our approach to other task-
parameterized approaches on feature level. As shown in [5]
task-parameterized approaches are more suitable for adapting
to new situations than non-task-parameterized approaches like
[30] or [31], including those involving multiple objects. To the
best of our knowledge, we present the first task-parameterized
approach allowing skill extensions with new frames and the
application of local via-points, making it possible to move
corrections with their corresponding objects and allowing
interactive modulations, where corrections/extensions can be
provided and incorporated into the policy online during exe-
cution.

III. PRELIMINARIES

Let us denote a set of demonstrations by
{{sh,m, ξh,m}Hh=1}Mm=1, where s ∈ RI and ξ ∈ RO

represent input and output, and I, O, M , H , are the
dimensions of input and output, number of demonstrations
and trajectory length, respectively. Similarly to many popular
LfD approaches [4], [8], [15], we focus on extracting the
relationship between s and ξ from demonstrations. Depending
on the task, s is often time or robot state while ξ represents
desired poses or velocities. In Sec. III and Sec. IV we keep
these generic except when concrete examples help explain
new concepts.

A. Task parameterized movement models

In TP models [2] a frame p = 1, . . . , P is described
by so-called task parameters b(p),A(p), which represent the
position and orientation of an object with respect to a common
reference frame (e.g. the robot base)1, where demonstrations
are recorded. Demonstrated outputs are projected locally,
into the coordinate systems of different objects, through
ξ(p) = A(p)−1 (

ξ − b(p)
)
. Local datasets are modeled proba-

bilistically yielding a Gaussian distribution N (µ(p),Σ(p)) for

1Task parameters can represent a number of affine transformations com-
monly found in robotics [2]. Here, as in other works [9]–[11], [14], we use
them to represent the coordinate systems of objects of interest.

every input s. During skill execution, local distributions are
mapped to the common frame, as both task parameters and
inputs change with time t, through µ̂

(p)
t = A

(p)
t µ

(p)
t + b

(p)
t ,

Σ̂
(p)
t = A

(p)
t Σ

(p)
t A

(p)⊤

t . Values of b(p),A(p) may differ
from those seen during the demonstrations, and, through µ̂

(p)
t ,

Σ̂
(p)
t , each frame provides a model of ξ from its perspective.

The distributions from different coordinate systems are fused
by a product of Gaussians, resulting in a new distribution
N (µt,Σt), in the common frame, with parameters

µt = Σt

P∑
p=1

Σ̂
(p)−1

t µ̂
(p)
t , Σt =

(
P∑

p=1

Σ̂
(p)−1

t

)−1

. (1)

The solution of (1) favors models with low variance, being an
efficient way to extract features from local models that were
consistent across demonstrations, facilitating generalization to
new situations.

B. Kernelized movement primitives (KMPs)

KMPs [8] are used in LfD to predict the distribution of ξ
given observations of s. A KMP is initialized with a reference
trajectory distribution comprised of N Gaussians with pa-
rameters {µn,Σn}Nn=1, computed from human demonstrations
for inputs sn=1,...,N using a GMM. For a test input s∗, the
expectation and covariance of ξ(s∗) are given by

E [ξ(s∗)]=k∗ (K + λ1Σ)
−1

µ, (2)

cov [ξ(s∗)]=α
(
k∗∗ − k∗ (K + λ2Σ)

−1
k∗⊤

)
, (3)

where K = [k̂(s1)
⊤, . . . , k̂(sN )⊤], k∗ = k̂(s∗), with

k̂(si) = [k(si, s1), . . . ,k(si, sN )], k∗∗ = k(s∗, s∗),
k(si, sj) = k(si, sj)I , where I is an identity matrix, and
k(si, sj) is a kernel function. Moreover, µ =

[
µ⊤

1 . . .µ⊤
N

]⊤
,

Σ = blockdiag (Σ1, . . . ,ΣN ) and λ1, λ2, α are
hyperparameters. The kernel matrices are denoted as
K,k∗ and k∗∗. From (2)–(3) it follows that if, for a certain
µn, the covariance Σn is small, the expectation at sn will
be close to µn. This provides a principled way for trajectory
modulation. Indeed, if, for a new input s̄, one wants to ensure
that the expectation passes through a desired µ̄, it suffices to
manually add the pair {µ̄, Σ̄} to the reference distribution
provided that Σ̄ is small enough. This both makes (2) closely
match µ̄ and lowers the covariance (3) to match Σ̄.

IV. INTERACTIVE LOCAL TRAJECTORY MODULATION
WITH TP-KMP

Similarly to [8], we define a local KMP as a model
Θ(p) = {b(p),A(p),D(p)} with associated task parameters
b(p),A(p) and D(p) = {s(p)n ,µ

(p)
n ,Σ

(p)
n }Nn=1. µ(p), Σ(p) are

computed from output data projected locally ξ(p), using a
GMM. A TP-KMP is a set of P local KMPs: Θ = {Θ(p)}Pp=1,
where each local KMP generates a distribution N (µ(p),Σ(p)),
computed from (2)–(3), which is used in (1). We introduce an
approach to interactively add via-points to local KMPs at any
moment of a task, allowing users to intuitively improve models
trained on sub-optimal demonstrations.
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A. Interactive trajectory modulation with local via-points

In our approach, users add via-points via physical correc-
tions locally, in different object frames, as opposed to in a
common global frame. This enables the adaptation of robot
behavior without retraining the model from scratch. Adding
via-points in the relevant local frames has the advantage that
corrections ‘move’ with the objects when task conditions
change, facilitating generalization. The via-point mechanism
of KMP entails the definition of a small covariance matrix, au-
tomatically assigning high importance in the Gaussian product
(1) to local KMPs that receive new via-points.

Algorithm 1 Trajectory modulation with local via-points

1: Define external force threshold γF , distance threshold γξ
and via-point variance γΣ

2: Input: P local KMPs Θ(p) = {b(p),A(p),D(p)}Pp=1

trained from {{sh,m, ξh,m}Hh=1}Mm=1

3: for time-step t in all time-steps T do
4: if interaction is triggered (see IV-A) then

▷ Create global via-point
5: v̄t = {s̄ = t, µ̄ = ξt, Σ̄ = γΣI}

▷ Find p∗ (see IV-A)
6: p∗ = argminp ||µ̄− b(p)||

▷ Map via-point v̄t locally to p∗ (see III-A)
7: v̄(p

∗) = {s̄(p∗), µ̄(p∗), Σ̄(p∗)}
▷ Update local KMP p∗ with via-point

8: D(p∗) ←D(p∗) ∪ v̄(p
∗)

9: Recompute K(p), k∗
(p) and k∗∗

(p) for all p where via-points
were added (see III-B)

B. Defining and adding local via-points

To incorporate kinesthetic feedback from users during task
execution, we introduce via-points at specific inputs and
outputs, where corrections are made. Let us assume a time-
driven TP-KMP, where s(p) = t, and ξ(p) = x(p) is the end-
effector position mapped to frame p. We further assume that
the robot tracks a reference ξ̂t = µt computed from (1) with
a stiffness that is low enough to allow deviations from the
desired path through physical interaction. We propose three
different feedback modalities to trigger new via-points:

• Distance: via-points are added if the distance between
the measured output ξt deviates from the reference ξ̂t by
a pre-defined threshold ||ξ̂t − ξt|| > γξ.

• Force: via-points are added if the external force applied
at the end-effector Ft exceeds a pre-defined threshold
||Ft|| > γF .

• Button press: via-points can be triggered through a
Boolean-type input such as pressing a button, e.g. on
a keyboard or on the robot’s button interfaces when
available.

In all cases, a via-point is defined globally, in a common frame,
as v̄t = {s̄ = t, µ̄ = ξt, Σ̄ = γΣI}, where γΣ is a small
scalar factor. Different feedback modalities provide users with
various options depending on the robot and task. Force-based
adaptation is well-suited for tasks (or sub-tasks) that require

little or no contact with the environment, where the robot can
interpret external forces as human intention. A distance criteria
is suitable for tasks where the robot has low stiffness and thus
would not measure high external forces when perturbed. In
Sec. V, we showcase the role of various feedback modalities.
When a new global via-point v̄t is defined, we rely on a
proximity-based criteria to determine which KMP to apply
it to. For this, we identify the closest frame to the via-point,
p∗ = argminp ||µ̄t − b(p)||. The via-point is then mapped to
the selected frame through µ̄(p∗) = (A(p∗))−1(µ̄− b(p

∗)),
Σ̄(p∗) = (A(p∗))−1Σ̄(A(p∗)⊤)−1 (see Sec. III for details) and
added to its KMP, entailing the recomputation of kernel-
related matrices K(p∗),k

∗
(p∗) and k∗∗

(p∗). The algorithm for
interactively adding via-points to local frames is summarized
in Algorithm 1.

C. Adding new objects through interactive via-point definition

Our approach permits adding new objects to a skill dur-
ing runtime, without requiring a new set of demonstrations.
Instead, we leverage Algorithm 1 to build on an existing TP-
KMP, Θ = {Θ(p)}Pp=1, by interactively adding via-points in
the frames of new objects. To achieve this, we employ two
key steps. Firstly, we associate to the new task parameters
b(P+1),A(P+1) a placeholder local KMP with the same inputs
as other local KMPs, zero means and high variances, defined
by a large scalar γD. Due to the high variance, the placeholder
KMP has a negligible influence in the Gaussian product (1),
not affecting the task unless via-points are added to it. Next,
we use Algorithm 1 to add via-points to the placeholder
KMP, interactively reducing the uncertainty at precise loca-
tions, enabling the model to adapt without requiring new
demonstrations. Algorithm 2 summarizes the procedure to add
new objects.

Algorithm 2 Interactively adding a new object to a TP-KMP

1: Input: TP-KMP Θ = {Θ(p)}Pp=1, variance prior γD, new
task parameters b(P+1),A(P+1).

2: Create a placeholder local KMP
- Define D(P+1) =
{s(P+1)

N = s
(P )
n ,µ

(P+1)
n = 0,Σ

(P+1)
n = γDI}Nn=1

- Define local KMP: Θ(P+1) = {b(P+1),A(P+1),D(P+1)}
- Compute K(P+1), k∗

(P+1) and k∗∗
(P+1)

- Add new local KMP to TP-KMP: Θ ← Θ ∪ Θ(P+1),
P = P + 1

3: Add via-points to new KMP interactively using Algo.1

D. Uncertainty-aware skill extension in regions without
demonstrations

Popular variable impedance schemes found in LfD regulate
the robot stiffness by the inverse of covariance matrices [23],
[28]. When the latter represent the aleatoric uncertainty, they
provide an efficient way for robots to be more precise, by being
stiffer, where demonstrations showed less variance, following
a minimum intervention control principle [28], [33]. In the case
of epistemic uncertainty, such schemes contribute to better
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compliance when the robot is uncertain about its actions [23].
In kernel-based methods, kernel hyperparameters are typically
optimized for the training data, but their choice influences the
behavior of the model in regions where data was not shown.
For instance, the kernel length depends on the scale of the
input domain, but it also dictates how quickly the epistemic un-
certainty increases when moving away from the training data.2

Having ways to clearly distinguish between the two types of
uncertainty enables users to better design variable impedance
strategies. Similarly to [34], the covariance prediction of KMP
can be decomposed into two terms, corresponding to aleatoric
and epistemic components (see Appendix 1 for the derivation):

cov [ξ(s∗)] =

k∗∗ − k∗K−1k∗⊤︸ ︷︷ ︸
Σ∗

ep

+k∗ (K +K(λ2Σ)−1K
)−1

k∗⊤︸ ︷︷ ︸
Σ∗

al

(4)

The term Σ∗
ep is the same as the variance prediction in

Gaussian process regression [35], corresponding to the epis-
temic part of the KMP covariance. The remaining term Σ∗

al

gives the aleatoric uncertainty. Using a Cartesian impedance
controller, from (4), we propose to compute the robot end-
effector stiffness3 using

GP = w1 ·
(
δepΣ

∗
ep

)−1
+ w2 · (δalΣ∗

al)
−1

, (5)

where w1 ∈ [0, 1] is a sigmoid function that depends on the
epistemic uncertainty w1(σ

2
ep) = 1/(1 + e−c1(σ

2
ep−c2)), with

σ2
ep = tr(Σ∗

ep)/O, and w2 = 1−w1. Through the parameters
c1 > 0, c2 one is able to regulate the rate at which the robot
stiffness switches between being governed by Σ∗

ep and Σ∗
al,

while ensuring continuity in the resulting accelerations. Pa-
rameters δep, δal re-scale the uncertainties without modifying
the kernel parameters, allowing, for example, Σ∗

ep to have a
stronger influence in GP far from the training data, which
permits a faster increase in robot compliance. We leverage (5)
to facilitate the acquisition of new data outside of the training
region through physical interactions, while being optimal in a
minimal intervention sense [28], [33], in regions where data
was provided.

V. EVALUATION

A. Evaluation on real robot

We evaluate our approach on a torque-controlled 7-DoF
robot in an industrial scenario where an inner ring of a ball
bearing needs to be transferred between two boxes (‘box 1’
and ‘box 2’) placed at different locations on a workbench.4 We
provide M = 4 demonstrations with different box positions,
see Fig. 1-top. We use a time-driven representation with

2Similar arguments can be made for other hyperparameters such as the
noise variance, see [23].

3We assume a controller u = GP (ξ̂ − ξ) − GD ξ̇, where GP , GD are
stiffness and damping gains, ξ̂, ξ, ξ̇ are the end-effector desired state, current
state and current velocity. GD changes with the joint configuration, to ensure
that the system is critically damped in Cartesian space [36]. Redundancy is
further addressed at joint level using a null space term that keeps the elbow
in a natural position.

4You can find more information and videos at github.com/DLR-
RM/interactive-incremental-learning

sh,m = th,m/Tm, where t is a time step, and learn the end-
effector position ξh,m = xh,m. In order to easily re-scale
the skill duration, we map all the inputs to the interval [0, 1]
by dividing them by the duration of each demonstration Tm.
The experiments start with P = 2, with task parameters
b(p),A(p) representing the box positions and orientations,
respectively. All local KMPs were initialized from GMMs
with 12 components, trained on locally projected data, and
N = 500 inputs, equally spread over the input space. We
chose a Matérn kernel (ν = 5/2) with length scale l = 0.1
and noise variance 1.0 (see [35]). Other KMP hyperparameters
were λ1 = 0.1, λ2 = 1, α = 1, chosen empirically. For
completeness, we provide an overview of hyperparameters in
Appendix 2. In all experiments, via-points are added with
γΣ = 1 × 10−8. Our algorithm successfully generalizes to
novel box positions. However, when they deviate significantly
from the demonstrated ones, TP-GMM [2], as well as the
original TP-KMP formulation [8] fail (see Fig. 1-bottom).

B. Experiment 1: Improving generalization with interactively-
defined local via-points

Since all demonstrations are given at the same height, the
model has a high confidence for the z coordinate in all frames,
which leads to poor generalization when one of the boxes
is moved to a different height (Fig. 1-bottom). If box 2 is
moved to a lower height, the trade-off found by the model,
from the expected vertical motions in the two frames, is
not high enough to successfully move the ring out of box
1, leading to a collision. Using Algorithm 1, we have the
ability to directly correct the robot and set via-points based
on corrections made online. In this experiment we used an
external force trigger, with threshold γF = 20N . Figure 3
shows the results obtained for this experiment. With the robot
running the model, a user applies a force at the robot end-
effector, helping it avoid the collision and successfully move
the ring out of the box. Via-points are added to the frame
of box 1 and, through b(1),A(1), are mapped to the global
frame. With the added via-points, the robot achieves a success
rate of 93% across 15 box configurations (with three different
heights), improved over the 60% success rate of TP-GMM [2]
and original TP-KMP [8] baselines (see Additional Material
C).

C. Experiment 2: Interactively adding a new object to skill
We introduce a new challenge by requiring the robot to

inspect the ring using a camera, before placing it in box 2.
For this, the user increments the existing skill by interactively
adding via-points to a new frame, given by the camera pose,
using Algorithm 2. The new via-points adapt the robot’s
trajectory to pass in front of the camera before placing the
ring in box 2. In this experiment we use the button interfaces
in the robot’s last link to trigger new via-points through button
presses. We further use P = 3, due to the new frame, and
γD = 1× 104. The experimental results are shown in Fig. 4.
With the task running, the user adds new via-points near the
camera (top-right), reducing the uncertainty in the camera
frame. Once the model is updated with the new via-points,
new executions pass in front of the camera (bottom-right).

https://github.com/DLR-RM/interactive-incremental-learning
https://github.com/DLR-RM/interactive-incremental-learning
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Fig. 3: Improving generalization with interactively-defined local via-points.
Since the robot would fail, a correction is shown close to box 1, indicated by
via-points in orange. The threshold for the external force γF is set to 20 N.

New Object

Box 1

Camera

Box 2

z

Y

X

z

Y

X

z

X

Y

Fig. 4: Interactively adding a new object to existing skill. We add a camera
to the scene, associate it with a new frame and add via-points to pass in front
of the camera, this time by pressing a button.

D. Experiment 3: Incremental learning at non-demonstrated
inputs

We further add a camera to the robot end-effector, which
validates the correct insertion of the ring in box 2. This
requires the robot to move up after placing the ring – a
skill extension to a set of inputs that were not shown in the
demonstrations (t > 1.0). We leverage (5) to ensure that the
robot becomes compliant by swiftly lowering its stiffness in
response to the increase in epistemic uncertainty.

We set c1 = 5 × 103, c2 = 1.5 × 10−3, δep = 1 × 103,
δal = 1, chosen empirically. We consider a baseline where
the gains are computed from the original KMP covariance (3)
as GP = (cov [ξ(s∗)])−1. To address numerical issues and
ensure a maximum stiffness value we regularize cov [ξ(s∗)],
δalΣ

∗
al, δepΣ

∗
ep with a small scalar 1.5×10−3. Figure 5 shows

that using our approach (5) the interaction forces after t = 1.0
are negligible. Note that far from the training data, the KMP
expectation (2) converges to zero, as we assume a zero mean
prior (similarly to GPs [35]). With the improved compliance
behaviors introduced by (5), the user is able to add via-points
such that the robot moves up after the ring insertion. In this
experiment we used a distance threshold with γξ = 0.2m,
taking advantage of the reference trajectory going to zero to
trigger the definition of via-points. The bottom-left image in
Fig. 6 shows the increase in distance as via-points are added,
while the plots on the right show the resulting robot motion
and uncertainties. Appendix 3 shows the detailed stiffness

Fig. 5: Left: Computing stiffness gains from (3) leads to increased interaction
forces at non-demonstrated inputs. Right: Using our approach (4)–(5) the
robot reacts quickly to the increase in the epistemic uncertainty, lowering its
stiffness. ||F|| represents the Euclidean norm of vector F.

TABLE II: Mean ± standard deviation distance from ground truth for the
pick-and-place task from Yao et al. [14]. All results besides TP-KMP [8] and
our approach are generated using the data and code provided by [14]. We
added via-points to the start and stop positions.

Start (mm) End (mm) Average (mm)
ProMP [15] 107.78 ± 7.99 137.84 ± 18.10 250.68 ± 137.13

TP-GMM (time-based) [2] 28.22 ± 14.90 74.11 ± 48.06 58.76 ± 21.43
TP-GMM (dynamic) [2] 27.54 ± 15.56 129.42 ± 100.18 83.45 ± 43.01

KMP [8] 25.80 ± 11.39 73.99 ± 36.44 57.48 ± 21.62
TP-ProMP [14] 32.62 ± 11.39 48.60 ± 20.68 48.51± 12.21

TP-KMP [8] 39.30 ± 29.06 6.93 ± 5.08 51.95 ± 26.44
Our approach

(with via-points)
3.88× 10−4

±2.54× 10−4

1.16× 10−3

±6.38× 10−4
50.23 ± 25.58

profiles from Experiment 3 including a sensitivity analysis of
the kernel length scales.

E. Evaluation on toy example

In Table II we compare the performance of our approach in
IV-A to other LfD approaches (with a strong focus on task-
parameterized formulations). For this comparison, we follow
the evaluation framework of Yao et al. [14] and ran both TP-
KMP [8] and our interactive approach on the pick-and-place
task; the results are based on 100 runs with different start and
end points. Our approach showed significant improvement at
both the start and end points, delivering the best results in this
comparison for start and end precision. This is due to showed
corrections at the start and end-point, which we did by locally
adding via-points at the origin of the corresponding reference
frames. Our approach also compares favorably in terms of
average precision, despite not including other via-points than
at start and end, similarly to [14].

VI. DISCUSSION

A. Analysis of the results

Fig. 3 shows that in Experiment 1 an external force trigger
successfully allows for the definition of via-points in the near-
est frame (that of box 1). Thanks to a small via-point variance,
the via-points are mapped to the global frame by (1) improving
generalization quality by avoiding a collision. Fig. 4, Exper-
iment 2 illustrates how the definition of a placeholder frame



KNAUER et al.: INTERACTIVE INCREMENTAL LEARNING OF GENERALIZABLE SKILLS WITH LOCAL TRAJECTORY MODULATION 7

Camera

Box 1
Box 2

z

Y

X

z

Y

X

Fig. 6: Adding via-points at t > 1.0, triggered by distance threshold γξ =
20m leads to increase of uncertainty outside of demonstrated area.

with large variance can be used in combination with the via-
point insertion mechanism from Experiment 1 to introduce
behaviors with respect to objects that were not present in the
demonstrations. Particularly, one observes that the variance
in frame 3 decreases after the via-points are added, with the
latter being successfully mapped to the global frame. Finally,
Experiment 3 shows how our stiffness regulation approach
leverages the epistemic uncertainty to enhance the robot’s
compliance beyond the initial set of demonstrations. While one
could argue that a similar effect could be achieved by manually
lowering the stiffness at t > 1.0, this would require manually
keeping track of the duration of demonstrations, as well as
the exact locations of newly added via-points. Our approach
automates this by relying on the data properties, increasing the
epistemic uncertainty both before and after via-points (Fig. 6-
right).

B. Limitations

In our approach, via-points are added in all Cartesian DoFs,
even though a correction might only be required in a subset
thereof (e.g. height in the first experiment). Since KMPs allow
the definition of via-point covariances with different diagonal
entries, one can, in principle, selectively set higher precision
only on the DoFs that receive a corrective action (keeping
the others as in the training data). This, however, requires a
more complex interaction mechanism which extracts the user
intention, a topic that we plan to address in future research.
Another possible limitation is that our approach currently does
not allow for combining new via-points with existing ones at
the same location. If a via-point is added at a location where
one already existed, the only way to account for the newly
added information is to replace the pre-existing via-point. To
provide users with more options for skill re-use, in future work
we will investigate mechanisms to interactively remove via-
points.

VII. CONCLUSION

We presented an interactive imitation learning framework
that leverages both local and global modulations of trajectory
distributions to address the problem of generalization in LfD.
To improve the generalization quality and incrementally add
new features to a demonstrated skill, the framework allows
the interactive definition of local via-points. This is facilitated
by a variable impedance scheme that leverages epistemic

TABLE III: Hyper-parameter overview

Hyper-parameter Used in
paper

Validated
range/options

Remark

Nr. of Gaussians to initialize GMM 12 [7; 40] ↑N : for more complex/longer tasks
Regularization term KMP mean λ1 0.1 [0.1; 1.0] ↑λ1: closer following the mean distribution of the KMP
Regularization term KMP variance λ2 1.0 [0.1; 1.0] ↑λ2: closer following the variance distribution of the KMP
Scaling factor for KMP covariance α 1.0 [0.1; 1.0] -
Length scale of kernel l 0.1 [0.1; 0.7] ↑ l: for smoother predictions, but less accuracte
Kernel function k(., .) matern2 matern2 / rbf -
Sigmoid function parameter c1 5 ×103 [1; 1× 104] ↑c1: control gains switch more quickly

between aleatoric and epistemic uncertainty
Sigmoid function parameter c2 1.5× 10−3 [1× 10−4; 1] ↑c2: epistemic uncertainty takes over for larger values of σ2

ep
Epistemic scaling factor δep 1× 103 [1; 1× 104] ↑δep: increases the influence of epistemic uncertainty
Aleatoric scaling factor δal 1 [1; 1× 104] ↑δal: increases the influence of aleatoric uncertainty

uncertainties to augment skills beyond the demonstrations.
Our results, evaluated on a ring-loading task using a torque-
controlled, 7-DoF robot, show that our framework permits
users to incrementally build on an initial model of a skill by
interactively correcting errors and adding new behaviors in any
phase of the task. This work has significant implications for
the development of robots that can learn from demonstration
and generalize their skills to new situations, making them more
versatile and effective in real-world applications.
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APPENDIX

1) Decomposition of KMP covariance into a sum
of epistemic and aleatoric terms: We here show that,
similarly to [34], the covariance prediction of KMP can be
decomposed into two distinct terms, corresponding to aleatoric
and epistemic components. Using the Woodbury identity
(A+UBV )−1 = A−1 −A−1U

(
B−1 + V A−1U

)−1
V A−1

with V = U = I , we can re-write (3) as:

cov [ξ(s∗)] =

= k∗∗ − k∗
[
K−1 −K−1

(
K−1 + (λ2Σ)−1

)−1
K−1

]
k∗⊤

= k∗∗ − k∗K−1k∗⊤ + k∗K−1
(
K−1 + (λ2Σ)−1

)−1
K−1k∗⊤

= k∗∗ − k∗K−1k∗⊤︸ ︷︷ ︸
Σ∗

ep

+k∗ (K +K(λ2Σ)−1K
)−1

k∗⊤︸ ︷︷ ︸
Σ∗

al

,

where, in the last step, we used
A−1

(
A−1 +B−1

)−1
A−1 =

(
A+AB−1A

)−1
(omitting

α for the sake of the derivation). Note the clear separation
between the two terms in (4). The term Σ∗

ep is the same as
the variance prediction in Gaussian process regression [35],
corresponding to the epistemic part of the KMP covariance.
The remaining term Σ∗

al gives the aleatoric uncertainty.
2) Hyper-parameter overview: Table III shows the different

hyperparameters used in this paper and a tested range of values
to provide a guideline for choosing hyperparameters.

3) Detailed stiffness profiles for Experiment 3 with kernel
length scale sensitivity analysis: Figures 7–8 give a detailed
view of the stiffness profiles which we observed in Experiment
3 (we focus on the x dimension for simplicity).

In Fig. 7 we see the stiffness profiles before any via-points
are added at t > 1.0. The left plot shows that after the
skill ends at t = 1.0, the stiffness computed by inverting
the covariance (3) decreases slowly to zero, an effect that is
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Fig. 7: Stiffness values GP for the x dimension, before via-points are added.
Left: Stiffness computed using the original KMP covariance (3), through
GP = (cov [ξ(s∗)])−1. Right: Stiffness computed using our approach that
separates epistemic and aleatoric uncertainties (5). The different line colors
correspond to different kernel lengths l, which we compared.

Fig. 8: Stiffness values GP for the x dimension, after via-points are added.
Left and right plots show the curves obtained with uncertainties computed
from (3) and (4), respectively, similarly to Fig. 7, using different kernel length
values l. Our approach (using uncertainty split) successfully makes the robot
compliant in regions without data.

more noticeable as the kernel length l increases. This behavior
explains the increased force profiles that we observed in Fig. 5,
bottom left, since the robot collides with the box for a few
instants as the stiffness approaches zero, making it unsafe
to interact with. The right plot shows how our proposed
approach (5) makes the stiffness approach zero faster and
with lower sensitivity to the value of l. The parameter c2
in the activation function allows regulation of the epistemic
uncertainty threshold at which GP transitions from being
governed by aleatoric uncertainty to epistemic uncertainty. For
this reason, even minor increases in epistemic uncertainty are
sufficient to trigger a decrease in stiffness making the robot
compliant and resulting in the lower interaction forces seen
in Fig. 5, bottom right. Due to the continuity of the sigmoid
function, the transition happens without discontinuities in the
generated control actions. Figure 8 shows that after via-points
are added, our approach successfully makes the robot com-
pliant in regions without data, regardless of the kernel length
scale, demonstrating improved compliance and efficiency.
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[8] Y. Huang, L. Rozo, J. Silvério, and D. Caldwell, “Kernelized movement
primitives,” The International Journal of Robotics Research (IJRR),
vol. 38, pp. 833–852, 05 2019.
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TABLE IV: Description of key notations

I ∈ N ≜ Input dimension
O ∈ N ≜ Output dimension
M ∈ N ≜ Number of demonstrations
H ∈ N ≜ Number of data points per demonstration
N ∈ N ≜ Number of gaussians per KMP
s ∈ RI ≜ Input variable
ξ ∈ RO ≜ Output variable
{{sh,m, ξh,m}Hh=1}

M
m=1 ≜ Set of demonstrations

x ≜ End-effector position in Cartesian space
P ∈ N ≜ Number of frames in a TP-KMP
p = 1, . . . , P ≜ Frame index
p∗ ≜ closest frame to a given via-point
b(p), A(p) ≜ Task parameters of frame p

s(p), ξ(p) ≜ Demonstrations represented locally in frame p

µ(p), Σ(p) ≜ Local mean and covariance of frame p

µ̂(p), Σ̂(p) ≜ Mean and covariance of frame p in global frame
v̄ = {s̄, µ̄, Σ̄} ≜ Via-point in global frame
v̄(p) = {s̄(p), µ̄(p), Σ̄(p)} ≜ Via-point in local frame p

D(p) = {s(p)n ,µ
(p)
n ,Σ

(p)
n }Nn=1 ≜ Local reference trajectory distribution

Θ(p) = {b(p),A(p),D(p)} ≜ Local KMP
Θ = {Θ(p)}Pp=1 ≜ TP-KMP
λ1, λ2 ≜ Regularization terms for KMP mean and covariance
α ≜ Scaling factor for KMP covariance
l ≜ Length scale of the kernel
k(., .) ≜ Kernel function
K, k∗, k∗∗ ≜ Kernel matrices for different combinations of inputs
K(p), k∗

(p)
, k∗∗

(p)
≜ p th local KMP kernel matrices

Σ∗
ep, Σ∗

al ≜ Epistemic and aleatoric terms of KMP covariance
σ2
ep ≜ Epistemic variance (diagonal element of Σ∗

ep)
F ≜ External force measured at the end-effector
γF ≜ Threshold for triggering force-based via-points
γξ ≜ Threshold for triggering trajectory-based via-points
γΣ ≜ Prior covariance of new via-points
γD ≜ Prior covariance of placeholder KMP
w1, w2 ≜ Weights of epistemic and aleatoric uncertainty
c1, c2 ≜ Sigmoid function parameters
δep, δal ≜ Epistemic and aleatoric scaling factors
GP , GD ≜ Stiffness and damping gains

TABLE V: Glossary of important acronyms

LfD ≜ Learning from Demonstration
DoF ≜ Degrees of Freedom
TP ≜ Task Parameterization
(TP)-GMM ≜ (Task parameterized)- Gaussian Mixture Model [2]
(TP)-GMR ≜ (Task parameterized)- Gaussian Mixture Regression [2]
(TP)-KMP ≜ (Task parameterized)- Kernelized Movement Primitive [8]
DMP ≜ Dynamic Movement Primitives [3]
ProMP ≜ Probabilistic Movement Primitives [15]
LfEC ≜ Learning from Extrapolated Corrections [30]
LfI ≜ Learning from Interventions [31]

A. Key notations

Table IV summarizes the key notations used in our framework.

B. Key acronyms

Table V shows a glossary of important acronyms in our approach.

C. Evaluation details

Table VI and Table VII show more details of the quantitative evaluation of 15 different task-parameterized scenarios,
mentioned in Sec. V-B of the paper.
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TABLE VI: (PART I) Quantitative evaluation of 15 different task parameterized scenarios. successful, successful but contact force was above 10 N,
failure, * successful but only after correcting the whole trajectory, which we count as failure.

# Configuration TP-GMM vanilla TP-KMP Ours

1
Box 1Box 2

2

Box 1Box 2

3

Box 1Box 2

4
Box 1

Box 2

5
Box 1

Box 2

*

6

Box 1
Box 2

7

Box 1

Box 2

8

Box 1

Box 2

continues in Table VII
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TABLE VII: (PART II) Quantitative evaluation of 15 different task parameterized scenarios. successful, successful but contact force was above 10
N, failure, * successful but only after correcting the whole trajectory, which we count as failure.

# Configuration TP-GMM vanilla TP-KMP Ours

9 Box 1Box 2

10

Box 1

Box 2

11

Box 1Box 2

12

Box 1Box 2

13

Box 1Box 2

14
Box 1

Box 2

15

Box 1

Box 2

Success rate: 60 % 60 % 93.33 %
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