Knauer, Markus Wendelin und Albu-Schäffer, Alin Olimpiu und Stulp, Freek und Silverio, Joao (2025) Interactive incremental learning of generalizable skills with local trajectory modulation. IEEE Robotics and Automation Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LRA.2025.3542209. ISSN 2377-3766.
![]() |
PDF
- Postprintversion (akzeptierte Manuskriptversion)
5MB |
Offizielle URL: https://dx.doi.org/10.1109/LRA.2025.3542209
Kurzfassung
The problem of generalization in learning from demonstration (LfD) has received considerable attention over the years, particularly within the context of movement primitives, where a number of approaches have emerged. Recently, two important approaches have gained recognition. While one leverages via-points to adapt skills locally by modulating demonstrated trajectories, another relies on so-called task-parameterized (TP) models that encode movements with respect to different coordinate systems, using a product of probabilities for generalization. While the former are well-suited to precise, local modulations, the latter aim at generalizing over large regions of the workspace and often involve multiple objects. Addressing the quality of generalization by leveraging both approaches simultaneously has received little attention. In this work, we propose an interactive imitation learning framework that simultaneously leverages local and global modulations of trajectory distributions. Building on the kernelized movement primitives (KMP) framework, we introduce novel mechanisms for skill modulation from direct human corrective feedback. Our approach particularly exploits the concept of via-points to incrementally and interactively 1) improve the model accuracy locally, 2) add new objects to the task during execution and 3) extend the skill into regions where demonstrations were not provided. We evaluate our method on a bearing ring-loading task using a torque-controlled, 7-DoF, DLR SARA robot.
elib-URL des Eintrags: | https://elib.dlr.de/212796/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Zusätzliche Informationen: | More information and video: https://github.com/DLR-RM/interactive-incremental-learning | ||||||||||||||||||||
Titel: | Interactive incremental learning of generalizable skills with local trajectory modulation | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 13 Februar 2025 | ||||||||||||||||||||
Erschienen in: | IEEE Robotics and Automation Letters | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/LRA.2025.3542209 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 2377-3766 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Incremental Learning, Imitation Learning, Continual Learning | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Factory of the Future | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||||||
Hinterlegt von: | Knauer, Markus Wendelin | ||||||||||||||||||||
Hinterlegt am: | 21 Feb 2025 18:06 | ||||||||||||||||||||
Letzte Änderung: | 21 Feb 2025 18:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags