Sun, Yao and Wang, Yi and Eineder, Michael (2024) QuickQuakeBuildings: Post-earthquake SAR-Optical Dataset for Quick Damaged-building Detection. IEEE Geoscience and Remote Sensing Letters, pp. 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2024.3406966. ISSN 1545-598X. (In Press)
PDF
- Postprint version (accepted manuscript)
3MB |
Official URL: https://ieeexplore.ieee.org/document/10542156
Abstract
Quick and automated earthquake-damaged building detection from post-event satellite imagery is crucial, yet it is challenging due to the scarcity of training data required for developing robust algorithms. This letter presents the first dataset dedicated to detecting earthquake-damaged buildings from post-event very high resolution (VHR) Synthetic Aperture Radar (SAR) and optical imagery. Utilizing open satellite imagery and annotations acquired after the 2023 Turkey-Syria earthquakes, we deliver a dataset of co-registered building footprints and satellite image patches of both SAR and optical data, encompassing more than four thousand buildings. The task of damaged building detection is formulated as a binary image classification problem, that can also be treated as an anomaly detection problem due to extreme class imbalance. We provide baseline methods and results to serve as references for comparison. Researchers can utilize this dataset to expedite algorithm development, facilitating the rapid detection of damaged buildings in response to future events. The dataset and codes together with detailed explanations and visualization will be made publicly available at https://github.com/ya0-sun/PostEQ-SARopt-BuildingDamage.
Item URL in elib: | https://elib.dlr.de/204614/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | QuickQuakeBuildings: Post-earthquake SAR-Optical Dataset for Quick Damaged-building Detection | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 30 May 2024 | ||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/LGRS.2024.3406966 | ||||||||||||||||
Page Range: | pp. 1-5 | ||||||||||||||||
Editors: |
| ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Series Name: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | In Press | ||||||||||||||||
Keywords: | Satellite SAR, Earthquake, building damage detection | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - SAR methods | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Remote Sensing Technology Institute > SAR Signal Processing | ||||||||||||||||
Deposited By: | Eineder, Prof. Dr. Michael | ||||||||||||||||
Deposited On: | 05 Jun 2024 13:18 | ||||||||||||||||
Last Modified: | 05 Jun 2024 13:18 |
Repository Staff Only: item control page