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QuickQuakeBuildings: Post-earthquake SAR-Optical
Dataset for Quick Damaged-building Detection
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Abstract—Quick and automated earthquake-damaged building
detection from post-event satellite imagery is crucial, yet it is
challenging due to the scarcity of training data required for
developing robust algorithms. This letter presents the first dataset
dedicated to detecting earthquake-damaged buildings from post-
event very high resolution (VHR) Synthetic Aperture Radar
(SAR) and optical imagery. Utilizing open satellite imagery and
annotations acquired after the 2023 Turkey–Syria earthquakes,
we deliver a dataset of co-registered building footprints and satel-
lite image patches of both SAR and optical data, encompassing
more than four thousand buildings. The task of damaged building
detection is formulated as a binary image classification problem,
that can also be treated as an anomaly detection problem due
to extreme class imbalance. We provide baseline methods and
results to serve as references for comparison. Researchers can
utilize this dataset to expedite algorithm development, facili-
tating the rapid detection of damaged buildings in response
to future events. The dataset and codes together with detailed
explanations and visualization will be made publicly available at
https://github.com/ya0-sun/PostEQ-SARopt-BuildingDamage.

Index Terms—building damage detection, convolutional neural
network (CNN), very high resolution (VHR), remote sensing
imagery, synthetic aperture radar (SAR), earthquake, geographic
information system (GIS), OpenStreetMap (OSM), large-scale
urban areas.

I. INTRODUCTION

Earthquakes can result in substantial structural and in-
frastructural damage, often with significant socioeconomic
consequences. After an event, fast and accurate detection of
earthquake-damaged buildings in remote sensing imagery is of
great importance. Remote sensing technologies can effectively
improve the efficiency of disaster management and have been
employed to estimate the extent of earthquake damage to
buildings [1]–[3]. Very high resolution (VHR) optical images
are easier to interpret, making them a preferred choice for
many studies. However, acquisition of cloud-free optical im-
ages depends on weather conditions and often needs to wait.
In contrast, SAR imagery is particularly suitable for rapid
disaster response scenarios as it can be acquired regardless
of cloud coverage and sun illumination conditions. Moreover,
the enhanced resolution of contemporary SAR satellite images
enables the extraction of information at the individual building
level [4]–[6], comparable to VHR optical data.

Over the past years, many researchers have developed
algorithms utilizing SAR data to detect earthquake-damaged

Y. Sun and Y. Wang are with Data Science in Earth Observation, Technical
University of Munich, 80333 Munich, Germany, Y. Wang and M. Eineder
are with the Remote Sensing Technology Institute, German Aerospace Cen-
ter, 82234 Wessling, Germany. (e-mails: yao.sun@tum.de; yi.wang@dlr.de;
michael.eineder@dlr.de)

The work of Y. Wang is supported by Helmholtz Association through the
Framework of Helmholtz AI.

buildings. Most existing works detect changes using both pre-
and post-earthquake SAR images to acquire building damage
information [7], [8]; however, pre-event high-resolution SAR
imagery is generally unavailable in most locations. A few
works simulate a SAR image using building shapes extracted
from a pre-event optical image and acquisition parameters
of a post-event SAR image and detect earthquake-damaged
buildings by comparing the simulated and real SAR images
[9]. Utilizing only a single post-event SAR image, some
researchers detect damaged buildings by analyzing signatures
of destroyed buildings in high-resolution SAR data [10]–[12].
However, the study areas often comprise a limited number of
isolated buildings that do not depict the typical conditions in
densely populated urban areas, where partially occluded build-
ings and geometric distortions in SAR images, i.e., foreshort-
ening, layover, and shadowing, commonly exist. Therefore, the
question of whether a single VHR SAR image acquired after
an event can effectively identify damaged buildings remains to
be addressed. In this regard, benchmark datasets play a pivotal
role in the development and comparative assessment of diverse
methodologies aimed at addressing the following questions:
To what extent can a single VHR SAR image, acquired post-
event, allow to identify damaged buildings and with which
accuracy? Additionally, how do the outcomes derived from a
single post-event SAR image compare with those of an optical
image?

From a practical standpoint, there are several challenges
in creating such a dataset: 1) Limited availability of high-
resolution SAR images in disaster-affected areas; 2) Absence
of labels for damaged buildings; 3) Lack of accurate terrain
models, without which aligning the two is a complex task.
Currently, such a dataset does not exist in the remote sensing
field.

This work presents the first dataset for detecting earthquake-
damaged buildings in post-event SAR and optical satellite
imagery. We integrate publicly accessible satellite imagery and
annotations obtained following the 2023 Turkey-Syria earth-
quakes and construct a dataset comprising over four thousand
buildings, each with satellite image patches of both post-event
SAR and optical data and its footprint co-registered with the
corresponding image patches. We formulate the problem of
damaged building detection as an image classification task
and benchmark a set of popular machine learning and deep
learning methods as a baseline reference.

The remaining part of the letter proceeds as follows: Section
II introduces the dataset generation approaches, Section III
presents the baseline methods and results, and Section IV
concludes the paper.
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II. DATASET GENERATION

This work aims at addressing building-level damages. The
tasks of identifying pixel-level damages and classifying the
types of damages are beyond the scope of this dataset.

Considering the increasing availability of building footprint
information across various geographic locations, we integrate
pre-event building footprints with post-event satellite images
and assess whether buildings at those locations are damaged.
The problem of detecting damaged buildings in post-event
imagery is therefore formulated as an image classification
task with two classes: damaged and intact buildings. We
generate and deliver a dataset comprising post-event VHR
SAR and optical image patches for each building, building
footprint masks corresponding to the image patches, and labels
indicating whether each building is damaged or intact. The
image patches and masks serve as inputs for the algorithm,
while the labels represent the ground truth.

A. Study Area and Data Sources

The study area is chosen in the city of Islahiye, located in
southeastern Turkey near the northwestern border of Syria. On
February 6, 2023, a magnitude 7.8 earthquake struck Kahra-
manmaras, Turky, followed by a 7.5 magnitude aftershock nine
hours later. The earthquakes inflicted widespread destruction,
leading to significant damage to buildings, injuries, and loss
of life. Islahiye was one of the most affected areas.

After the earthquakes, a set of high-resolution satellite data
was released under CC BY 4.0 license1 to support rescue
operations by commercial remote sensing companies, such as
Maxar and Planet Lab for optical data, and Capella Space
in the SAR domain. During the humanitarian relief efforts,
communities across the globe, such as OSM and UN map-
pers, organized labeling events and identified and validated a
significant number of damaged buildings.

We utilize the Spotlight SAR image from Capella Space,
acquired on February 9, 2023. The SAR image is of type
Geocoded Terrain Corrected (GEO)2, with a pixel spacing
of 0.35 m in both the azimuth and the range direction. The
incidence angle of this SAR image is 43.1◦. Figure 1 shows
the image coverage and zoomed-in views of selected areas.
The optical image covering the same area was obtained from
Maxar Analysis-Ready Data (ARD) under Maxar’s open data
program. The image was acquired on February 7, 2023 by
WorldView-3, with a ground sampling distance of 0.31 m and
an incidence angle of 83.1◦. In addition, we obtained post-
event building footprints and labels of destroyed buildings in
the study area from Humanitarian OpenStreetMap Team 3 4.
Since we consider both SAR and optical images, all used data
are chosen or projected to the Universal Transverse Mercator
(UTM) coordinate system so that they can be processed
uniformly. The SAR image is logarithmically scaled in dB
for further processing.

1https://creativecommons.org/licenses/by/4.0/
2https://support.capellaspace.com/hc/en-us/articles/

360039702691-SAR-Data-Formats
3https://data.humdata.org/dataset/hotosm tur buildings
4https://data.humdata.org/dataset/hotosm tur destroyed buildings

Fig. 1. The SAR image coverage and zoomed-in views of three areas in the
colored boxes in the SAR image, respectively.
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Fig. 2. Examples of four study areas in the SAR image. Building footprint
polygons before and after registration are plotted in red and green, respec-
tively.

B. Co-registration of building footprints and satellite imagery

Building-level analysis requires accurate registration of 2-
D building footprints with satellite images. The ARD opti-
cal image aligns well with building footprints, requiring no
additional registration. For the GEO SAR image, inspection
shows that building polygons are not well-matched with the
SAR image, as shown in the first row of Figure 2, and further
registration is needed.

In urban areas, the geocoding errors in SAR data are often
caused by inaccurate terrain heights, as illustrated in Figure
3(a). A height error δH causes an error of δL in the slant
range and a shift of δG on the ground. For the used SAR
image, the incidence angle is 43.1◦; thus, a height error of
10 meters results in an error of 10.69 meters on the ground,
causing errors of δx and δy in the geocoded image related to
the flight direction, as shown in Figure 3(b). The height error
δH is usually inconstant over the observed area by the SAR
sensor; hence, so are the geocoding errors.

To improve the alignment of building polygons and the SAR
image, we apply the algorithm developed in [13], which relies
on the corresponding building features representing the bottom
of sensor-visible walls in both the two data, i.e., double bounce
lines in the SAR image and near-range boundaries of 2-D
building polygons, as illustrated in Figure 4. As the majority
of buildings remain upright, with expected double bounce line
signatures on the SAR image, the algorithm is applicable.
Interested readers are referred to [13] for more details. Next,
we briefly explain the main steps of the algorithms.

1) Extracting corresponding features: In the SAR image,
double bounce lines correspond to the far-range side of the
bright building signature. The SAR image is first segmented
using Potts model [14]. Then, an intensity threshold and an
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(a) (b)
Fig. 3. The geocoding error from inaccurate height. (a) Ht and Hf are
the accurate height and inaccurate height of a point, and θ is the incidence
angle. The height error δH results in an error of δL = δHcosθ in the slant
range and δG = δHcotθ on the ground. (b) In the geocoded image, δG is
decomposed to δx and δy in the image coordinate system.

Fig. 4. Building signature in SAR imagery and building’s geometric corre-
spondence between SAR and building polygon: the near-range side of the
building footprint corresponds to the double bounce line in the SAR image,
which is the far-range side of the facade signatures [13].

area threshold are applied to select building wall segments.
Subsequently, the boundary of wall segments is extracted, and
the visibility check is performed to extract the double bounce
lines caused by the wall segment boundary.

In the building polygons, the segments in the near-rage
side of building polygons are extracted from each footprint,
which in 3-D represent the bottom of illuminated or partially
illuminated walls.

2) Registering corresponding features: two point sets, GIS
points (from building polygons) and SAR points, are then
sampled in the extracted features from both data, and the reg-
istration problem is reduced to determine the correspondence
and the underlying spatial transformation between two point
sets.

Feature registration consists of three progressive steps:
global registration, subarea registration, and polygon reg-
istration, and the rigid registration in each step is solved
with the Iterative Closest Point (ICP) algorithm [15]. Global
registration uses rough height values for an initial alignment
of the two data, ensuring that the residual shift falls within a
manageable range. Then, a set of grids, i.e., subareas, is evenly
distributed over the whole region. The distance between one
GIS point and its closest SAR point is calculated for all points.
If the distribution of all distances within one subarea shows a
clear center, the δH in each grid is considered to be constant,
and subarea registration is conducted. When the distribution
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Fig. 5. Examples of the dataset: a, b, c are intact buildings, and d, e, f are
damaged buildings.

of all distances does not show a clear center, the constant δH
assumption does not hold, and the registration proceeds to
the polygon level, i.e., finding a rigid transformation for each
polygon.

Since the SAR image, i.e., the GEO product, has been
terrain corrected, we neglect global registration and perform
subarea and polygon registration. Afterward, manual valida-
tion and editing with expert knowledge are conducted to ensure
precise registration, relying on identifying double bounce lines
and the assumption of no abrupt terrain changes for editing
buildings with unclear double bounce lines [13]. For individual
buildings, we estimate a maximum registration error of 5-
6 pixels (approximately 2 m) that is sufficient for locating
individual buildings. Figure 2 shows building polygons on the
SAR image in exemplary areas before and after registration.
As can be seen, the registration procedure effectively aligns
the two data sets. Note that buildings in the mountainous area
on the west side of the city (e.g., in or near the red box in
Figure 1) are excluded due to unclear signals in the SAR
image, posing challenges for registration verification.

C. Patch generation

For each building, we crop the SAR image and the optical
image based on the area of the building, considering including
the target building area, i.e., footprint, wall, and roof, as well
as the possible ruins around the target building and excluding
surrounding buildings.

For side-looking SAR images, layover areas of buildings
extend from building footprints towards the near-range direc-
tion. Therefore, when cropping SAR image patches, a buffer
size of 10 pixels, i.e., around 3.5 m, is counted for far-range
sides, and for near-range sides, an additional buffer size is
counted to include layover areas of the target building in the
image patch. Specifically, the layover length corresponding
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to 50 m building height in the ground range direction is
decomposed to the image x- and y- directions and added to the
buffer size. The optical image has a small off-nadir angle of
6.3◦, resulting in a minor offset between the roof outline and
the corresponding 2-D building footprint when the image is
not perfectly orthorectified. To ensure that the image patches
include the entire building roof, we apply a 16-pixel buffer to
compensate for the offset, which is approximately 5 meters.
This buffer is slightly larger than the one used when cropping
the SAR image from the near-range side, and it is used to crop
the optical image around the bounding box of the building
footprint polygons.

In addition, for each building, its footprint mask is generated
corresponding to the SAR patch and the optical patch, respec-
tively. For side-looking SAR data, it is necessary to include
the footprint mask to help locate the target building, as the
SAR patch may include signals of surrounding buildings. For
nadir-looking optical data, footprint masks are included for a
fair comparison with the SAR data.

Among the 4029 buildings, 169 are damaged, and the
remaining 3860 buildings are intact. Consequently, the dataset
contains 169 damaged buildings and 3860 intact buildings,
and each of them has four patches: a SAR image patch, a
SAR footprint patch, an optical image patch, and an optical
footprint patch. Figure 5 shows examples of the dataset on six
buildings, of which three are intact and three are damaged.

III. EXPERIMENTAL RESULTS

We benchmark an image classification task with two classes:
damaged and intact buildings. Due to the significant class
imbalance, it can also be viewed as an anomaly detection task,
i.e., detecting damaged buildings within the entire dataset.

A. Baseline Approaches

Four models are introduced to establish a benchmark:
support vector machine (SVM), random forest (RF), 3-layer
convolutional neural network (CNN), and ResNet-18 [16].

SVM and RF are selected for their good performance
in many applications, including classifying collapsed and
standing buildings from post-event SAR imagery as reported
in [11]. To extract features as the input, we mask out non-
building pixels with footprints, and follow the setup proposed
in [11], which employs four first-order statistics, i.e., mean,
variance, skewness, and kurtosis, and eight second-order image
statistical measures, i.e., mean, variance, homogeneity, con-
trast, dissimilarity, entropy, second moment, and correlation.
For a detailed explanation, the readers are referred to [11].

A simple 3-layer CNN and a ResNet-18 are selected as
the deep learning backbones. The simple CNN consists of
3 convolution-ReLU-maxpool blocks, followed by average
pooling, a linear layer with dropout, and a final classification
layer. We stack image and building footprint as the input. The
ResNet-18 follows the standard design in [16], with which
we benchmark both early and late fusion results of images
and building footprints. For late fusion, images and building
footprints are encoded by separate encoders, and the feature
vectors are concatenated together to a following linear layer

with dropout and a final classification layer. Apart from single-
modal results, we also conduct a late fusion experiment with
both SAR and optical data as a multimodal reference.

B. Evaluation Metrics

To evaluate the performance of the baseline methods, we
report the precision, recall, and F1 scores:

P =
tp

tp+ fp
,R =

tp

tp+ fn
, F1 = 2 · P ·R

P +R
, (1)

where P and R denote the precision and recall, and tp, fp,
tn, fn represent true positives, false positives, true negatives,
and false negatives for buildings, respectively. The thresholds
for positive/negative are determined by best F1 scores.

In addition, we report the area under the receiver-operator
curve (AUROC), a standard metric in anomaly detection tasks
that well reflects the model’s efficiency in distinguishing
between classes. The AUROC score summarizes the ROC
curve into a single number that describes the performance of
a model for multiple thresholds at the same time.

C. Implementation Details

We conduct cross-fold experiments for a robust evaluation
on the relatively small dataset. Specifically, we split the dataset
into 5 folds with a balanced number of damaged and intact
buildings, and run each experiment 5 times with 4 folds
training and 1 fold testing. The mean and standard deviation
are calculated and reported for every evaluation metric.

We preprocess the images by removing 2% pixel outliers
and normalizing the pixel values to the range [0,1]. For simple
CNN, we randomly initialize the model; for ResNet-18 early
fusion, we use pure ImageNet weights; for ResNet-18 late
fusion, we use ImageNet weights for optical images and
footprints, and SAR-HUB [17] weights for SAR images. We
use random resized crop and random horizontal and vertical
flip as data augmentations. To deal with the significant class
imbalance, we give a bigger weight to damaged buildings and
a smaller weight to intact buildings during data sampling. We
optimize binary cross entropy loss with AdamW optimizer for
30 epochs. The learning rate follows a cosine-decay schedule
starting from 0.0001. Batch size is set to 32.

For the statistic features used by the two machine learning
methods, we calculated the features of image patches based
on the implementation of or PyFeats5. For calculating the
evaluation metrics, we use the implementation in scikit-learn6.

D. Performance Comparison

Table I illustrates variations in performance across different
models on the dataset. In general, deep neural networks outper-
form SVM and RF in both SAR and optical scenarios. For the
SAR image, ResNet-18 underperforms simple CNN regarding
all four metrics with early fusion and ImageNet weights,
indicating the optimization challenge of complex SAR data.

5https://github.com/giakou4/pyfeats
6https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc auc

score.html
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TABLE I
BENCHMARK RESULTS ON THE DATASET: 5-FOLD MEAN(STD). THE HIGHEST VALUES OF DIFFERENT METRICS ARE HIGHLIGHTED IN BOLD FOR EACH

SET OF UTILIZED DATA. EARLY FUSION IS NOTED AS EF, WHILE LATE FUSION IS NOTED AS LF.

Image SAR optical SAR+optical

model SVM RF
CNN ResNet18 ResNet18

SVM RF
CNN ResNet18 ResNet18 ResNet18

(EF) (EF+ImageNet) (LF+SAR-HUB) (EF) (EF+ImageNet) (LF+ImageNet) (LF+SAR-HUB+ImageNet)

Precision 0.096(0.021) 0.223(0.090) 0.167(0.028) 0.155(0.067) 0.237(0.116) 0.163(0.044) 0.611(0.215) 0.489(0.154) 0.666(0.121) 0.622(0.213) 0.746(0.062)
Recall 0.495(0.202) 0.344(0.208) 0.371(0.073) 0.276(0.080) 0.427(0.104) 0.352(0.148) 0.354(0.098) 0.432(0.078) 0.539(0.147) 0.646(0.143) 0.615(0.117)
F1 0.154(0.037) 0.231(0.071) 0.228(0.032) 0.184(0.050) 0.282(0.077) 0.207(0.057) 0.421(0.106) 0.449(0.096) 0.581(0.100) 0.605(0.120) 0.670(0.072)
AUROC 0.653(0.068) 0.670(0.079) 0.739(0.026) 0.653(0.043) 0.769(0.032) 0.723(0.047) 0.810(0.062) 0.853(0.045) 0.938(0.022) 0.941(0.026) 0.962(0.023)

This issue is resolved with proper weight initialization from
SAR-HUB (around 10% improvement in AUROC and F1

scores), highlighting the importance of SAR pretrained models
such as provided in [17].

For the optical image, ResNet-18 with late fusion stands out
with the highest recall, F1 score, and AUROC. It outperforms
other models across these three metrics. ResNet-18 with early
fusion gived best precision. The other deep learning model,
CNN, demonstrates a balance between precision and recall,
resulting in a high F1 score and an impressive AUROC of
0.853. RF attains high precision at 0.611 but a relatively lower
recall rate. In contrast, SVM yields less favorable outcomes
compared to other models.

Comparing SAR and optical images, we can see that SAR
images appear to be more challenging for all models, with gen-
erally lower performance than optical images. Nevertheless,
good SAR models, e.g., ResNet-18 with SAR-HUB pretrained
weights, outperform bad optical models such as SVM.

In addition, the fusion of SAR and optical imagery pro-
vides further improvement compared to each single modality,
confirming the complementary information across different
modalities.

IV. CONCLUSION

Detecting earthquake-damaged buildings in post-event satel-
lite imagery is essential yet challenging. This study introduces
a dataset designed to address the issue and to foster the
development of robust algorithms. The dataset combines post-
event SAR and optical satellite images with labels of damaged
and intact buildings, and the problem is formulated as an
image classification task. We provide a benchmark on both
modalities with different baseline methods and a baseline of
fusing optical and SAR data. Results show that detecting
damage from post-event SAR images is valuable and possible
but more challenging than optical images. Such findings call
for further research on improved methods, in particular on
SAR images. In addition, the performance gain through simple
SAR-optical fusion verifies the potential in using multimodal
data when they can be acquired following an event.

Constrained by limited data quantity and data imbalance,
this dataset serves as a starting point. The dataset will undergo
expansion and updates as new data emerges in the future.
We hope that the research community will engage in further
algorithm development for post-earthquake damaged building
assessment in SAR images and, where feasible, share their
data, thus expediting the identification of post-disaster dam-
aged structures.
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