Tassi, Cedrique Rovile Njieutcheu und Börner, Anko und Triebel, Rudolph (2023) Monte Carlo averaging for uncertainty estimation in neural networks. Journal of Physics: Conference Series, 2506 (1), 012004. Institute of Physics (IOP) Publishing. doi: 10.1088/1742-6596/2506/1/012004. ISSN 1742-6588.
PDF
- Verlagsversion (veröffentlichte Fassung)
925kB |
Offizielle URL: https://iopscience.iop.org/article/10.1088/1742-6596/2506/1/012004
Kurzfassung
Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD.
elib-URL des Eintrags: | https://elib.dlr.de/203008/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Monte Carlo averaging for uncertainty estimation in neural networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 28 Juli 2023 | ||||||||||||||||
Erschienen in: | Journal of Physics: Conference Series | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 2506 | ||||||||||||||||
DOI: | 10.1088/1742-6596/2506/1/012004 | ||||||||||||||||
Seitenbereich: | 012004 | ||||||||||||||||
Verlag: | Institute of Physics (IOP) Publishing | ||||||||||||||||
ISSN: | 1742-6588 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | monte carlo averaging; uncertainty; neural networks | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D IAS - Innovative autonome Systeme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - SKIAS, R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme > Echtzeit-Datenprozessierung Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition Institut für Datenwissenschaften | ||||||||||||||||
Hinterlegt von: | Strobl, Dr. Klaus H. | ||||||||||||||||
Hinterlegt am: | 27 Feb 2024 14:34 | ||||||||||||||||
Letzte Änderung: | 11 Nov 2024 13:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags