
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Monte Carlo averaging for uncertainty estimation
in neural networks
To cite this article: Cedrique Rovile Njieutcheu Tassi et al 2023 J. Phys.: Conf. Ser. 2506 012004

 

View the article online for updates and enhancements.

You may also like
Fred: a GPU-accelerated fast-Monte Carlo
code for rapid treatment plan recalculation
in ion beam therapy
A Schiavi, M Senzacqua, S Pioli et al.

-

Comparison of Monte Carlo and analytical
dose computations for intensity modulated
proton therapy
Pablo Yepes, Antony Adair, David
Grosshans et al.

-

A Monte Carlo tool for evaluating VMAT
and DIMRT treatment deliveries including
planar detectors
G Asuni, T A van Beek, S Venkataraman
et al.

-

This content was downloaded from IP address 129.247.247.240 on 27/02/2024 at 10:01

https://doi.org/10.1088/1742-6596/2506/1/012004
https://iopscience.iop.org/article/10.1088/1361-6560/aa8134
https://iopscience.iop.org/article/10.1088/1361-6560/aa8134
https://iopscience.iop.org/article/10.1088/1361-6560/aa8134
https://iopscience.iop.org/article/10.1088/1361-6560/aaa845
https://iopscience.iop.org/article/10.1088/1361-6560/aaa845
https://iopscience.iop.org/article/10.1088/1361-6560/aaa845
https://iopscience.iop.org/article/10.1088/0031-9155/58/11/3535
https://iopscience.iop.org/article/10.1088/0031-9155/58/11/3535
https://iopscience.iop.org/article/10.1088/0031-9155/58/11/3535
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstFkiFdSw4GyDcuul60Oh50_YmTgTiNFFxG-W1pjmS4BN2V0e0yb3KCNI__OXF5uKNPxQazP1t9dcuhEEqkXJFTDcNrSdRzxyyGTDH6rzXLjGz4WVspq3xAmE0J-htnVw6lw6YbLq8iIsDP5BY8OE3PER-_EU2ZxH6iliOiXQkNaCLWMGxk-o5qind6b8wbDZLjvOoKBav7JjXW_BTEpdWwO8fgDejVClSw8AD0Y7GYRvTZrt0Zgtm-H1iMqzZOwI2KyO8bz-6BGfAM7_F7PUQ1dS7ZC_OeKgfEANFEldw917CCZOokzgo4Mw0mOzQGchN1B6h2uBOXMUiS&sig=Cg0ArKJSzFlYROHj9bGp&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://ecs.confex.com/ecs/prime2024/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3Dprime_abstract_submission


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

JCRAI-2022
Journal of Physics: Conference Series 2506 (2023) 012004

IOP Publishing
doi:10.1088/1742-6596/2506/1/012004

1

Monte Carlo averaging for uncertainty estimation in

neural networks

Cedrique Rovile Njieutcheu Tassi1∗, Anko Börner1, and Rudolph
Triebel2

1 German Aerospace Center, Institute of Optical Sensor Systems, Berlin, Germany
2 German Aerospace Center, Institute of Robotics and Mechatronics, Wessling, Germany
∗ E-mail: njieutcheu@gmail.com

Abstract. Although convolutional neural networks (CNNs) are widely used in modern clas-
sifiers, they are affected by overfitting and lack robustness leading to overconfident false predic-
tions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses)
can be avoided and the use of CNNs in safety- and/or mission-critical applications would be
effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs
by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To
achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging
(MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo
dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison
is performed using the results of experiments conducted on four datasets with three different
architectures. The results show that MCA performs as well as or even better than MMCD,
which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could
be used instead of MMCD for uncertainty estimation, especially because it does not require a
predefined distribution and it is less expensive than MMCD.

Keywords: Convolutional neural network (CNN), ensemble, Monte Carlo dropout (MCD),
mixture of Monte Carlo dropout (MMCD), Monte Carlo averaging (MCA), separating true
predictions (TPs) and false predictions (FPs), confidence calibration

1. Introduction
Because of the emergence of large datasets, increasing computational power, and advances in
deep learning, convolutional neural networks (CNNs) have become the standard for solving
classification problems. Despite the widespread use of CNNs in modern classifiers [1, 2, 3], they
are faced with several problems, such as overfitting [4], which causes overconfident predictions [5],
and lack of robustness. An example of a lack of robustness was described by Hendrycks
and Dietterich [6], who empirically showed that CNNs can change their predictions when
perturbations, such as blur or noise, are applied to the input image. This overconfidence
and lack of robustness can lead to overconfident FPs. Several other authors also empirically
showed that CNNs can overconfidently misclassify out-of-domain (OOD) examples (situations
not present in the training data) [7, 5, 8]. In [9], the authors showed that CNNs can also
overconfidently misclassify domain-shift examples, which are in-domain examples (situations
present in the training data) affected by a set of perturbations, such as changes in the camera
lens and lighting conditions. Overconfident FPs can be costly and dangerous, especially when
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CNN-based classifiers are part of the decision making unit of systems for safety- and/or mission-
critical applications, such as collision avoidance [10], door recognition for visual-based robot
navigation [11], and pedestrian detection [12]. In this study, FPs will result in false actions
in the environment, leading to robot collisions, potential false medical treatments, and/or
increased financial costs. By preventing FPs, we can avoid these consequences and encourage
the widespread adoption of CNNs in safety- and/or mission-critical applications. This goal will
be achieved by estimating and evaluating the predictive uncertainty of CNNs and ensuring that
the confidence measuring uncertainty is high ([50%, 100%]) for TPs and low ([0%, 50%[) for FPs.
This, however, calls for a research question: What method is required to achieve high and low
confidence of CNN-based classifiers for TPs and FPs, respectively? In our paper titled A Survey
of Uncertainty in Deep Neural Networks [13], we suggested an uncertainty estimation technique
that combines the strengths of both Bayesian and ensemble principles. This technique was
adopted in this current work and thus, MCA was proposed, a method similar to the mixture of
Monte Carlo dropout (MMCD), which combines the strengths of an ensemble and Monte Carlo
dropout (MCD). MCA is deterministic similar to an ensemble, evaluates multiple features such
as in the ensemble and MMCD, and evaluates uncertainty associated with extracted features
similar to MCD and MMCD, both of which are stochastic. We, therefore, empirically compared
MCA and other related methods (baseline (single CNN), MCD, ensemble, and MMCD) based
on results from experiments conducted on four datasets (CIFAR10, FashionMNIST, MNIST,
and GTSRB) using three different architectures (DenseNets, ResNets, and VGGNets). Results
show that MCA can perform equally or even better than MMCD. Similar to MMCD, MCA
can preserve the classification accuracy of the underlying ensemble, which can increase the
classification accuracy of the baseline, which can only be preserved via MCD. Similar to MMCD,
MCA can separate TPs and FPs better than baseline, ensemble, and MCD but at the cost of
increasing calibration error on test data.

2. Related works
MCD [14, 15] is one of the most widely used approximations for Bayesian inference. It samples
features by dropping neurons using Bernoulli masks. Several related works have investigated
various extensions of MCD. For example, Tassi [16] investigated the use of dropout in pooling
and/or convolution instead of fully-connected layers. Zeng et al. [17] investigated the position
and number of Bayesian layers required to approximate a fully Bayesian neural network (BNN)
and found that only a few Bayesian layers near the output of the BNN are sufficient. Similarly,
Brosse et al. [18] evaluated the quality of uncertainty that results when only the last layer is
Bayesian, and found that last-layer BNNs perform similarly well compared with full BNNs.
Kristiadi et al. [19] complemented the empirical evidence of Brosse et al. [18] with a theoretical
justification showing why it is sufficient to make the last layer Bayesian at low cost overhead.
According to Zeng et al. [17] and further supported by Brosse et al. [18], the use of multiple
Bayesian layers in a BNN can compromise accuracy without improving the quality of uncertainty.
However, the more Bayesian layers are, for example, by using a high dropout probability, the
more uncertainty we can capture at the cost of sacrificing the accuracy [17, 16]. Other studies
investigated the use of different dropout strategies, such as drop-connect, where connections
are dropped instead of neurons [20, 21], or structured dropout, where layers or channels are
dropped [22]. Other studies [21, 16] evaluated the use of different dropout masks, such as
Gaussian, Bernoulli, or a cascade of Gaussian and Bernoulli. Taken together, all these works
show that a single MCD layer near the output of a CNN, for example, at the input of the first
fully-connected layer, is sufficient for uncertainty quantification. Moreover, all the studies show
that the MCD is sensitive to the sampling masks drawn from a predefined distribution. The
proposed MCA does not require a predefined distribution from which masks are drawn and
therefore overcomes the drawback of the MCD.
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The ensemble was initially proposed for improving accuracy [23, 1]. Existing methods
for introducing diversity among ensemble members, such as random initialization, data
shuffling, bagging, and data augmentation, were originally proposed for improving the accuracy.
Nevertheless, ensembles have become a popular method for uncertainty estimation through
the pioneering work of Lakshminarayanan et al. [5]. Several related works have evaluated the
performance of ensembles in capturing in-domain uncertainties [24] or OOD uncertainties [9].
Other works [25, 26, 9] compared ensembles with other uncertainty estimation methods such as
MCD and concluded that ensembles perform better than MCD. Lakshminarayanan et al. [5] used
random initialization and data shuffling to build ensembles for uncertainty estimation. Lee et
al. [27] experimentally showed that the diversity introduced into ensemble members via random
parameter initialization is more useful than that introduced via bagging. They concluded that
random initialization is not only sufficient, but also preferable to bagging for building ensembles
of CNNs because CNNs have a large parameter space and require large training data. They
also showed that bagging can result in poorly calibrated ensembles. According to Wen et
al. [28], data augmentation approaches, such as mixup [29], can also harm the calibration of
ensembles. This has also been reported in other studies [30, 31]. In [31, 24, 32], the authors
improved the calibration of ensembles using temperature scaling. In this work, to avoid harming
the calibration of ensembles, diversity was introduced into ensemble members using random
initialization, data shuffling, and standard label-preserving data augmentation techniques, such
as rotation, translation, flipping, shear and additive Gaussian noise.

MMCD was used in [10, 33, 34] for uncertainty estimation. It combines the strengths of MCD
and ensemble. Although MCD evaluates a single local optimum in a given solution space,
but additionally considers the uncertainty of the local optimum, an ensemble includes multiple
deterministic CNNs representing different local optima in the solution space and therefore
evaluates multiple modes (extracted features) [35]. However, an ensemble does not account
for the uncertainty around the individual modes. To explore the uncertainty around each mode,
MMCD applies MCD to each ensemble member.

3. Background
3.1. Convolutional neural network
For image classification, a CNN is a function f that maps an input image x ∈ RH×W×C to a class
label y ∈ UK , where H, W , and C are the height, weight, and number of channels of the input
image, respectively. UK and K denote the set of standard unit vectors of RK and the number
of possible classes, respectively. A CNN consists of two main modules: a features extractor,
which is realized using convolutional and pooling layers, and a discriminator, which is realized
using fully-connected layers. Thus, a CNN is a composite of two functions fFeatureExtractor()
and fDiscriminator(). That is

f : x ∈ RH×W×C → y ∈ UK ; fDiscriminator(fFeatureExtractor(x)) = p(y|x) , (1)

with predicted class label y = argmaxk(pk(y|x)) and predicted confidence c = maxk(pk(y|x))
for k = 1, ...,K. A single CNN is referred to as the baseline.

3.2. Monte Carlo dropout
MCD samples x̂ = fFeatureExtractor(x) with masks drawn from a predefined distribution.
Assuming sampling with masks drawn from the cascade of Gaussian and Bernoulli distributions,
MCD samples x̂ as

xs = x̂ ∗ αs ∗ βs, with αs
i ∼ N (1, σ2 =

q

1− q
) and βs

i ∼ Bernoulli(q), (2)
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where q, αs
i and βs

i denote the dropout probability, and the elements of the sampled masks αs

and βs, respectively. MCD estimates p(y|x) using the mean of S features sampling operations.
That is,

p(y|x) ≈ 1

S

S∑
s=1

ps(y|x) ≈ 1

S

S∑
s=1

fDiscriminator(x̂
s). (3)

MCD is referred to as the average of S stochastic CNNs. Its main drawback is that it is
sensitive to the sampling mask drawn from a predefined distribution parameterized by a dropout
probability q, which is sensitive to the dataset and/or architecture [16].

3.3. Ensemble
Given a set of CNNs fm for m ∈ 1, 2, ...,M , the ensemble prediction p(y|x) is estimated by
averaging over the predictions of all CNNs. That is,

p(y|x) :=
1

M

M∑
m=1

pm(y|x) :=
1

M

M∑
m=1

fDiscriminatorm(fFeatureExtractorm(x)). (4)

An ensemble is referred to as the average of M deterministic CNNs (M << S). Its major
drawback is the inability to evaluate the uncertainty associated with the extracted features.

3.4. Mixture of Monte Carlo dropout
MMCD overcomes the drawback of an ensemble by applying MCD to individual ensemble
members to evaluate the uncertainty associated with the extracted features. Given an ensemble,
MMCD estimates p(y|x) as

p(y|x) ≈ 1

M · S

M∑
m=1

S∑
s=1

pms(y|x) ≈ 1

M · S

M∑
m=1

S∑
s=1

fDiscriminatorm(x̂
ms), (5)

where x̂ms is a feature sampled (as shown in (2)) from x̂m = fFeatureExtractorm(x). MMCD is
referred to as the average of M · S stochastic CNNs. It has a similar drawback as MCD.

Features
extractor DiscriminatorFeatures

averaging

Features
extractor DiscriminatorFeatures

averaging

Features
extractor DiscriminatorFeatures

averaging

Figure 1. Overview of prediction estimation via features averaging inherent in MCA.
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4. Proposed method: Monte Carlo averaging
Although the MMCD overcomes the drawback of an ensemble, it has drawbacks similar to MCD.
To overcome this drawback, we proposed MCA, which replaces all feature sampling operations
(inherent in MMCD) with averaging operations (see Figure 1) for feature perturbation.
Particularly, MCA evaluates the uncertainty associated with the features extracted from an
ensemble member m ∈ 1, 2, ...,M by averaging (or perturbing) them sequentially with the
features extracted from other ensemble members n ∈ 1, 2, ...,M . This is motivated by the
hypothesis that features extracted from different ensemble members are different. To verify
this hypothesis, we evaluated the classification accuracy when the discriminators of members
m evaluate only features extracted from other members n, where n ̸= m. That is, p(y|x) is
estimated as

p(y|x) :=
1

M2

M∑
m=1

M∑
n=1

pmn(y|x) :=
1

M2

M∑
m=1

M∑
n=1

fDiscriminatorm(x̂
n) . (6)

We found that with this, the classification accuracy drops drastically. For example, the
classification accuracy of an ensemble trained on CIFAR10 dropped from 89.50% to 17.73%
when we estimated p(y|x) as shown in (6). This means that the discriminators of members m
cannot correctly classify the features extracted from other members n. This proves that the
features extracted from different ensemble members are different. Therefore, MCA perturbs the
features x̂m (extracted from member m) by averaging them sequentially with the features x̂n
(extracted from other members n). That is, given a set of CNNs fm, MCA estimates p(y|x) as

p(y|x) :=
1

M2

M∑
m=1

M∑
n=1

pamn (y|x) :=
1

M2

M∑
m=1

M∑
n=1

fDiscriminatorm(x̂
amn ), (7)

where x̂amn = 1
2 x̂

m + 1
2 x̂

n. Here, m can be equal to n to preserve the classification accuracy.
MCA is referred to as the average of M2 deterministic CNNs. Overall, the proposed MCA is an
alternative to MMCD. Both MCA and MMCD have the same purpose and underlying principle.
Specifically, both approaches evaluate multiple features extracted from multiple members and
evaluate the uncertainty associated with the extracted features based on feature averaging or
sampling.

5. Experimental setup
Training details Performance was expected to be dependent on task difficulty (dataset). This
is because some datasets (e.g., GTSRB [36]) have more noise in their samples than others (e.g.,
MNIST [37]). Additionally, some datasets (e.g., CIFAR10 [38]) are more challenging to learn
than others (e.g., MNIST [37]). Performance was also expected to be dependent on architecture
because architecture determines how information is propagated from the input to subsequent
layers and different architectures can result in different gradient computations and, thus, different
solutions. Therefore, we compared MCA and related methods using four different datasets to
evaluate their abilities to perform on different tasks with different difficulties. We compared these
methods using three different architectures to evaluate their abilities to perform on different
architectures. Specifically, we evaluated MNIST on VGGNets [1], FashionMNIST [39] on
ResNets [2], CIFAR10 on DenseNets [3], and GTSRB on ResNets [2]. All CNNs were randomly
initialized and trained with a random shuffling of training samples. All CNNs were trained with
categorical cross entropy and stochastic gradient descent with a momentum of 0.9, a learning
rate of 0.02, a batch size of 128, and epochs of 100. All CNNs were regularized with batch
normalization [40] layers placed before each convolutional activation function and dropout layers
placed at the inputs of the fully-connected layers. Regularization was also conducted using
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standard data augmentation, such as rotation, translation, scaling, and shear. All images were
standardized and normalized by dividing the pixel values by 255.

(a) Test data

(b) Swap data

(c) Noisy data

Figure 2. Ex-
amples of evalua-
tion data for CI-
FAR10.

Inference details We applied features sampling in MCD and features
averaging in MCA at inputs to the first fully-connected layers. MCD
samples feature using masks drawn from a cascade of Bernoulli and Gaussian
distributions [16] and using a dropout probability of 0.5. MCD samples 100
features (S = 100). Ensembles and MCA include 20 CNNs (M = 20).

Evaluation metrics We expect MCA and related methods to preserve
the classification accuracy, while providing a good estimate of confidence.
Therefore, we compared these methods with respect to the classification
accuracy and quality of confidence. The quality of confidence was assessed
by the degree of confidence calibration and the ability to separate TPs and
FPs. The ability to separate TPs and FPs was assessed by evaluating the
average confidence. The degree of the calibration was assessed by evaluating
the calibration error using the expected calibration error (ECE) [41, 42],
which is defined as shown in (10). It sorts and groups the predictions
of evaluation data of size N into B equally-spaced bins and weighs the
difference between the classification accuracy and the average confidence of
the bins. The bin bm denotes the set of indices of the evaluation sample
t whose confidence falls into the interval Im =]m−1

B , mB ]. The expected
accuracy acc(bm) of bin bm is estimated as in (9). The expected confidence
conf(bm) within bin bm is estimated as in (8). Confidence values are well-
calibrated when acc(bm) = conf(bm) ∀ m ∈ [1;B].

conf(bm) =
1

|bm|
∑
t∈bm

ĉt (8)

acc(bm) =
1

|bm|
∑
t∈bm

1(ŷt = yt) (9)

ECE =

B∑
m=1

|bm|
N

|conf(bm)− acc(bm)| (10)

Evaluation data We used five evaluation data (test data, subsets of correctly classified test
data, OOD data, swap data, and noisy data) for different purposes. The test data were used to
evaluate the classification accuracy and the ECE. We expect the classification accuracy to be
high and the ECE to be low for test data. Subsets of correctly classified test data include 1000
correctly classified test data and were used to evaluate the average confidence for TPs. Swap
data were simulated with subsets of correctly classified test data that were structurally perturbed
by dividing the images into four regions and swapping the regions diagonally (see 2b). The
swap data were used to evaluate the average confidence for FPs caused by structurally perturbed
objects. Noisy data were simulated with subsets of correctly classified test data perturbed by
additive Gaussian noise with a standard deviation of 500 (see 2c). The noisy data were used
to evaluate the average confidence for FPs caused by noisy objects. OOD data were simulated
using 1000 test data from CIFAR100 [38] and were used to evaluate the average confidence on
FPs caused by unknown objects. TPs and FPs are separable when the confidence for TPs is
high and the confidence for FPs is low. Therefore, we expect the average confidence to be high
for TPs and low for FPs.
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Table 1. Summary of classifica-
tion accuracy (CA), average con-
fidence (AC), and expected cali-
bration error (ECE) obtained on
test data.

CA (AC)
[%]

ECE
[10−2]

CIFAR10 (DenseNets)

Baseline 86.02 (86.36) 2.06
MCD 85.65 (70.57) 15.11
Ensemble 90.15 (83.48) 6.75
MMCD 89.70 (69.84) 19.87
MCA 89.75 (69.27) 20.49

FashionMNIST (ResNets)

Baseline 90.23 (89.76) 1.88
MCD 90.32 (79.00) 11.41
Ensemble 92.99 (86.87) 6.34
MMCD 93.10 (75.63) 17.48
MCA 92.96 (69.88) 23.09

MNIST (VGGNets)

Baseline 98.92 (98.48) 0.70
MCD 98.96 (95.01) 3.99
Ensemble 99.11 (98.25) 1.12
MMCD 99.13 (94.78) 4.48
MCA 99.13 (85.34) 13.81

GTSRB (ResNets)

Baseline 93.41 (97.17) 3.87
MCD 93.38 (90.30) 3.54
Ensemble 94.68 (92.55) 2.59
MMCD 94.31 (86.71) 7.73
MCA 94.62 (77.56) 17.18

Table 2. Summary of average confidence (AC)
[%] obtained on true predictions (TPs) (↑) and false
predictions (FPs) (↓): TPs were obtained on subsets of
correctly classified test data. FPs were obtained on swap,
noisy, or OOD data.

TPs
FPs
(OOD)

FPs
(Swap)

FPs
(Noisy)

CIFAR10 (DenseNets)

Baseline 95.94 88.29 57.88 80.48
MCD 82.79 35.72 38.56 33.01
Ensemble 96.40 38.41 50.28 56.10
MMCD 83.48 24.34 35.63 28.92
MCA 83.20 19.40 36.17 30.76

FashionMNIST (ResNets)

Baseline 96.18 54.69 73.93 91.35
MCD 85.66 35.69 56.57 81.48
Ensemble 95.06 49.83 55.71 58.49
MMCD 83.27 37.40 44.21 39.15
MCA 77.12 32.83 37.83 35.99

MNIST (VGGNets)

Baseline 99.38 60.86 61.58 97.37
MCD 96.00 44.93 49.39 88.79
Ensemble 99.34 55.95 52.59 62.93
MMCD 95.88 48.23 43.02 58.45
MCA 86.40 38.88 34.91 47.45

GTSRB (ResNets)

Baseline 99.79 56.87 53.63 50.21
MCD 94.53 26.14 31.19 27.57
Ensemble 99.20 34.12 39.98 29.96
MMCD 92.61 17.92 28.13 21.34
MCA 84.87 16.14 21.69 17.76

6. Experimental results
Comparison of classification accuracy and calibration error of MCA and related methods
Table 1 summarizes the classification accuracy, average confidence, and ECE for test data.
The results show that MCD can preserve the classification accuracy of the baseline (single
CNN), since the increase/decrease in classification accuracy of the baseline caused by MCD
is minimal. For example, for CIFAR10, MCD decreases the classification accuracy of the
baseline from 86.02% to (only) 85.65%. Moreover, for FashionMNIST, MCD increases the
classification accuracy of the baseline from 90.23% to (only) 90.32%. Furthermore, the results
show that an ensemble can increase the classification accuracy of the baseline, since the increase
in classification accuracy of the baseline caused by an ensemble is significant. For example,
for CIFAR10, the ensemble increases the classification accuracy of the baseline from 86.02%
to 90.15%. However, the results show that MMCD and MCA can preserve the classification
accuracy of the underlying ensemble, since the increase/decrease in classification accuracy of an
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ensemble caused by MMCD or MCA is minimal. Table 1 shows that the ECE of a baseline is
lower than that of an ensemble, which is in turn lower than that of MCD, MMCD, and MCA.
This means that baseline is better calibrated than ensemble, which is in turn better calibrated
than MCD, MMCD, and MCA. Table 1 also shows that the ECE of MCD is lower than that of
MMCD, which is in turn lower than that of MCA. This means that, MCD is better calibrated
than MMCD, which is in turn better calibrated than MCA.

Table 3. Mean and standard
deviation of inference time
(in seconds) obtained over
100 test samples of CIFAR10
evaluated on DenseNets.

Inference time[s]

Baseline 0.06± 0.01
MCD 1.33± 0.09
Ensemble 1.22± 0.05
MMCD 22.30± 0.42
MCA 5.00± 0.25

Comparison of the ability of MCA and related methods to
separate TPs and FPs Table 2 summarizes the average
confidence (AC) for TPs and FPs. The results show that
ensembles maintain high confidence for TPs like baselines.
However, MCD, MMCD, and MCA reduce the confidence of
TPs. For example, for FashionMNIST, ensemble reduces the
AC of baseline for TPs from 96.18% to (only) 95.06%, while
MCD, MMCD, and MCA reduce it to 85.66%, 83.27%, and
77.12%, respectively. Furthermore, the results show that the
AC of baseline is larger than that of other methods for all FPs.
This means that MCD, ensemble, MMCD, and MCA reduce
the confidence of baseline for FPs. However, the ability of the
ensemble to reduce the confidence of FPs better than MCD is
dependent on the dataset, architecture, or type of FPs. For
example, for FashionMNIST, the ensemble reduces the AC of
baseline for FPs from 91.35% to 58.49% due to noisy data,
whereas the MCD reduces it to (only) 81.48%. By contrast, for FPs due to the OOD data,
the ensemble reduces the AC of the baseline from 54.69% to (only) 49.83%, whereas the MCD
reduces it to 35.69%. However, for CIFAR10, the AC of the ensemble for all FPs is higher than
that of MCD. Furthermore, Table 2 shows that MMCD and MCA reduce the confidence of the
underlying ensemble for all FPs. Table 2 also shows that MCA can maintain low confidence for
FPs similar to or sometimes even better than MMCD.

Table 4. Summary of
classification accuracy (CA),
average confidence (AC), and
expected calibration error
(ECE) obtained on CIFAR10
evaluated on DenseNets with
footnotesize capacity.

CA (AC)
[%]

ECE
[10−2]

MMCD 86.67 (57.58) 29.10
MCA 89.03 (68.04) 21.01

Comparison of the inference time of MCA and related methods
Table 3 shows that MMCD is more than four times more
expensive than MCA, which is also more expensive than an
ensemble and MCD. This means that both MMCD and MCA
increase the inference time.

Assessing the design benefit of MCA over MMCD We reduced
the capacity of DenseNets by reducing the number of parameters
from 21.36 million to 5.02 million and retrained them on
CIFAR10. We then evaluated classification accuracy, AC, and
ECE for test data (see Table 4). The results show that the ECE
of MCA is footnotesizeer than that of MMCD. This indicates
that the confidence drop on TPs is larger for MMCD than for
MCA. Here, MMCD fails because the predefined distribution
from which the masks were drawn was not fine-tuned when
the capacity of the DenseNets was reduced. Particularly, the
dropout probability of 0.5 is too large for DenseNets with a
footnotesize capacity.
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7. Discussion
To achieve our goal of improving the separability of TPs and FPs by enforcing the confidence
to be high for TPs and low for FPs, the research question What method is required to achieve
high and low confidence for TPs and FPs, respectively? must be answered. To address this
question, MCA was proposed and compared to related methods (baseline (single CNN), MCD,
ensemble, and MMCD). We showed that MCD could preserve the accuracy of the baseline,
while reducing the confidence for TPs. This finding indicates that MCD (mainly) affects the
degree of confidence than accuracy. Conversely, we showed that an ensemble can increase the
accuracy of the baseline, while maintaining high confidence for TPs. This result is consistent with
previous studies [1, 2] showing that ensemble can increase accuracy. This is because an ensemble
evaluates multiple features. We showed that MMCD and MCA can preserve the accuracy of
the underlying ensemble, while reducing the confidence for TPs. However, this result suggests
that, similar to MCD/MMCD, MCA (mainly) affects the degree of confidence than accuracy.
This is because feature sampling in MCD/MMCD and feature averaging in MCA evaluate the
uncertainty associated with a given feature, but does not change the prediction associated with
the feature. We showed that baseline is (often) better calibrated than ensemble, which is (often)
better calibrated than MCD, MMCD, and MCA. Moreover, we showed that MCD is (often)
better calibrated than MMCD, which is (often) better calibrated than MCA. This is because
MCD, MMCD, and MCA reduce the confidence of TPs. The larger the decrease in the degree
of confidence for TPs, the larger the calibration error. We showed that ensemble can reduce the
confidence of baseline for FPs, while maintaining the confidence for TPs (nearly) unchanged.
However, MCD, MMCD, and MCA can reduce the confidence of baseline for FPs at the cost
of reducing the confidence for TPs. We showed that the ability of an ensemble to reduce the
confidence of FPs better than MCD is dependent on the dataset, architecture, or FP type. This
result suggests that we cannot claim that the ensemble performs better than MCD in terms
of capturing uncertainty. However, this contradicts previous studies [25, 26, 9], which claim
that ensemble captures uncertainty better than MCD. Although MMCD and MCA reduce the
confidence for TPs, the remaining confidence for TPs is still high ([50%, 100%]) whereas the
confidence for FPs is low ([0%, 50%[). Therefore, we hypothesized that MCA and MMCD can
separate TPs and FPs better than ensemble or MCD. This is because MCA and MMCD not only
evaluate multiple features extracted from different members like an ensemble, but also evaluate
the uncertainty associated with the extracted features. For this reason, MCA and MMCD
capture the diversity between the different members better than an ensemble and therefore
improve the uncertainty. We showed that MCA can maintain low confidence for FPs similar
to or sometimes even better than MMCD. Hence, we hypothesized that MCA can perform (in
terms of separating TPs and FPs) similar to or sometimes even better than MMCD. Although
MMCD and MCA have similar performance, the design process of MMCD is more complex
than that of MCA. This is because MMCD requires the specification of a prior distribution from
which masks will be drawn for feature sampling, whereas MCA relies on features extracted from
ensemble members. Besides, MMCD is more expensive than MCA because of the large number
of sampling operations.

8. Conclusion
By sequentially averaging the features of ensemble members, MCA evaluates the uncertainty
associated with the extracted features like MMCD. Based on the empirical comparison of MCA
and related methods, we conclude that MCA can obtain performance similar to or sometimes
even better than MMCD. Particularly, like MMCD, MCA can preserve the accuracy of the
underlying ensemble. MCA, like MMCD, can separate TPs and FPs better than baseline,
ensemble, and MCD. This finding suggests that we can use MCA instead of MMCD for
applications (such as collision prediction [10]), where the separability of TPs and FPs is
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essential. MCA can also benefit other fields (such as active learning [17], online learning [25],
and reinforcement learning [33]) where uncertainty is required.

9. Limitations
Although MCA can improve the separability of TPs and FPs, it can increase the calibration
error because it reduces the confidence in TPs. This suggests that improving the separability of
TPs and FPs may negatively affect confidence calibration, and vice versa. We argue that the
confidence drop in TPs is caused by inductive biases inherent in ensemble members or introduced
by feature averaging. To reduce the level of inductive biases, we can combine ensemble members
by averaging logits instead of probabilities. This will, however, be investigated in future works.
MCA relies on multiple members like ensemble and MMCD, and for a large number of members,
it may require a large amount of storage memory. This may limit its adoption in applications
with a limited amount of storage memory. To overcome this limitation, future research should
explore pruning methods [43] to reduce the number of members to three or five and therefore
reduce the memory requirement.
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[30] Maroñas J, Ramos D, Paredes R. Improving Calibration in Mixup-trained Deep Neural
Networks through Confidence-Based Loss Functions. arXiv preprint arXiv:200309946. 2020.

[31] Rahaman R, Thiery AH. Uncertainty Quantification and Deep Ensembles. stat.
2020;1050:20.

[32] Wu X, Gales M. Should Ensemble Members Be Calibrated? arXiv preprint
arXiv:210105397. 2021.

[33] Lütjens B, Everett M, How JP. Safe reinforcement learning with model uncertainty
estimates. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE;
2019. p. 8662-8.



JCRAI-2022
Journal of Physics: Conference Series 2506 (2023) 012004

IOP Publishing
doi:10.1088/1742-6596/2506/1/012004

12

[34] Wilson AG, Izmailov P. Bayesian Deep Learning and a Probabilistic Perspective of
Generalization. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors.
Advances in Neural Information Processing Systems. vol. 33; 2020. p. 4697-708.

[35] Fort S, Hu H, Lakshminarayanan B. Deep ensembles: A loss landscape perspective. arXiv
preprint arXiv:191202757. 2019.

[36] Houben S, Stallkamp J, Salmen J, Schlipsing M, Igel C. Detection of traffic signs in real-
world images: The German Traffic Sign Detection Benchmark. In: The 2013 international
joint conference on neural networks (IJCNN). Ieee; 2013. p. 1-8.

[37] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE. 1998;86(11):2278-324.

[38] Krizhevsky A, Hinton G, et al. Learning multiple layers of features from tiny images. 2009.

[39] Xiao H, Rasul K, Vollgraf R. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:170807747. 2017.

[40] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In: International conference on machine learning. PMLR; 2015. p.
448-56.

[41] Naeini MP, Cooper GF, Hauskrecht M. Obtaining well calibrated probabilities using
bayesian binning. In: Proceedings of the... AAAI Conference on Artificial Intelligence.
AAAI Conference on Artificial Intelligence. vol. 2015. NIH Public Access; 2015. p. 2901.

[42] Guo C, Pleiss G, Sun Y, Weinberger KQ. On calibration of modern neural networks. In:
International Conference on Machine Learning. PMLR; 2017. p. 1321-30.

[43] Tsoumakas G, Partalas I, Vlahavas I. A taxonomy and short review of ensemble selection.
In: Workshop on Supervised and Unsupervised Ensemble Methods and Their Applications;
2008. p. 1-6.


