Koller, Christoph and Kauermann, Göran and Zhu, Xiao Xiang (2023) Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty Improve Model Performance in Earth Observation? IEEE Transactions on Geoscience and Remote Sensing (62), pp. 1-11. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3336357. ISSN 0196-2892.
PDF
- Published version
10MB |
Official URL: https://ieeexplore.ieee.org/document/10354049
Abstract
Technological and computational advances continuously drive forward the field of deep learning in remote sensing. In recent years, the derivation of quantities describing the uncertainty in the prediction, which naturally accompanies the modeling process, has sparked interest in the remote sensing community. Often neglected in the machine learning setting is the human uncertainty that influences numerous labeling processes. As the core of this work, the task of local climate zone (LCZ) classification is studied by means of a dataset that contains multiple label votes by domain experts for each image. The inherent label uncertainty describes the ambiguity among the domain experts and is explicitly embedded into the training process via distributional labels. We show that incorporating the label uncertainty helps the model to generalize better to the test data and increases model performance. Similar to existing calibration methods, the distributional labels lead to better-calibrated probabilities, which in turn yield more certain and trustworthy predictions.
Item URL in elib: | https://elib.dlr.de/201482/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty Improve Model Performance in Earth Observation? | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 12 December 2023 | ||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/TGRS.2023.3336357 | ||||||||||||||||
Page Range: | pp. 1-11 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Calibration, classification, human uncertainty, local climate zones (LCZs), uncertainty quantification (UQ) | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Jena , Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Institute of Data Science | ||||||||||||||||
Deposited By: | Koller, Christoph | ||||||||||||||||
Deposited On: | 09 Jan 2024 15:13 | ||||||||||||||||
Last Modified: | 29 Jan 2024 13:06 |
Repository Staff Only: item control page