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Going Beyond One-Hot Encoding in Classification:
Can Human Uncertainty Improve Model
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Abstract— Technological and computational advances continu-
ously drive forward the field of deep learning in remote sensing.
In recent years, the derivation of quantities describing the
uncertainty in the prediction—which naturally accompanies the
modeling process—has sparked interest in the remote sensing
community. Often neglected in the machine learning setting
is the human uncertainty that influences numerous labeling
processes. As the core of this work, the task of local climate
zone (LCZ) classification is studied by means of a dataset
that contains multiple label votes by domain experts for each
image. The inherent label uncertainty describes the ambiguity
among the domain experts and is explicitly embedded into
the training process via distributional labels. We show that
incorporating the label uncertainty helps the model to generalize
better to the test data and increases model performance. Similar
to existing calibration methods, the distributional labels lead to
better-calibrated probabilities, which in turn yield more certain
and trustworthy predictions. For reproducibility, we provide
our code here https://github.com/ChrisKo94/LCZ_LDL and here
https://gitlab.lrz.de/ai4eo/WG_Uncertainty/lcz_ldl.

Index Terms— Calibration, classification, human uncertainty,
local climate zones (LCZs), uncertainty quantification (UQ).

I. INTRODUCTION

OVER the past years, deep learning has had a tremen-
dous impact on many research fields across almost all

domains, and remote sensing is no exception. Deep neu-
ral networks have enhanced the precision and accuracy of
task-solving models by large margins. Concurrent advancing
computational power of modern hardware has enabled such
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complex models to be trained while using continually shrink-
ing time and resources. While the overall performance can
be pushed by ever more complex models, the reliability of
the resulting predictions is often neglected. Especially for
image classification tasks, where prediction takes the form of
a probability distribution over a set of possible classes, it is
of crucial importance to rely on the model’s confidence in
its predictions. A common characteristic regarding the labels
is label noise [1], which describes the pollution of the labels
from potentially various sources.

Another aspect of label quality is ambiguity among the
classes, which can occur naturally in the cases of, for example,
multilabel classification or head pose estimation. As a pro-
posed solution to deal with label ambiguity, label distribution
learning [2] was introduced. The framework combines the idea
of labels taking the form of a distribution across the space of
the different possible classes, and a suitable loss function to
learn this distribution.

Opening up the learning task to distributional labels can
be highly beneficial for many applications. For safety-critical
fields such as medical image analysis [3] in particular, pre-
dictions are required to be well-calibrated, while there is
occasionally inevitable human label uncertainty [4]. These
aspects also apply to remote sensing data, but are hardly
ever discussed. Label ambiguity is a known but rarely tackled
problem, where examples of exception are given by using
the ambiguity information for synthetic aperture radar (SAR)
image segmentation [5] or the application of label distribution
learning toward aerial scene classification [6]. In this work,
we focus on the classification of local climate zones (LCZs)
from satellite images. LCZs are here adopted to allocate urban
conglomerates and their environment around the world into
17 different clusters [7], which is helpful, for e.g., identifying
potential urban heat islands (UHIs) or urban planning.

In a recently published work [8] the So2Sat LCZ42 dataset
was introduced as a new benchmark dataset for which a
label confidence of 85% was stated. We study this dataset,
which contains satellite images of European cities as well
as additional urban areas around the globe. As a peculiarity,
for each image, we are presented with ten label votes from
human remote sensing experts. These votes do not coincide
for many images, which reflect the inherent human uncertainty
about the labels in the data and which show the difficulties
entangled with the labeling process. Our novel proposal is
to embed this human uncertainty during the training of a
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Fig. 1. LCZ classification scheme for the So2Sat LCZ42 dataset as shown by [9]. Classes 1–10 are urban areas, classes A–G are vegetation zones.

neural network classifier and investigate its performance and
confidence compared to using traditional one-hot encoded
labels. Our experiments send a clear message: Explicitly
incorporating the inherent human uncertainty into the training
process of the model is highly beneficial for both model
performance and the calibration of predictive probabilities.

II. RELATED WORK

Identifying climate zones is a common task when gather-
ing information regarding land cover from satellite images.
A popular and widely-used scheme is termed LCZs [7]. The
different classes are defined to describe urban areas and their
surroundings. Originally published for the evaluation of UHIs
[10], [11], the scheme has since then been widely used for
various climatological applications [12], [13] and urban plan-
nings [14], [15], [16]. The community-driven project termed
World Urban Database and Portal (WUDAPT) [17] targets a
global high-quality coverage with the LCZ scheme. So far,
significant effort has been shown to reach this goal [18], [19],
[20], [21]. With the advancements of deep learning in the
remote sensing community, more complex models have been
established in order to classify processed satellite imagery
into LCZs. Data from both the Landsat [22], [23] and the
Sentinel satellite missions [24], [25] have been successfully
employed for this task. More recently, a new benchmark
dataset [8] was introduced to the community. For a scope of
42 global cities, high-quality satellite image patches are freely
provided with manually crafted LCZ labels. Recent works
based on this benchmark dataset explore various network
architectures [26] or fuse multiple data sources [27], [28], [29].
Deep learning models trained on this benchmark have also
been applied to achieve global urban LCZ maps for a better
understanding of the global urban morphology [30]. As for
land cover classification in general, knowledge graphs have
been successfully adapted recently [31]. In particular, for zero-
shot classification, where previously unseen data is classified,
several works have utilized knowledge graphs [32], [33].

The goal of uncertainty quantification (UQ) in the field of
deep learning lies in building a model that not only provides a
prediction but also a measure of certainty or confidence [34].
Generally, we can distinguish between epistemic uncertainty,

which is caused by the model, and aleatoric uncertainty
inherent in the data [35]. Epistemic uncertainty can be reduced
by finding a more suitable model or architecture, whereas
aleatoric uncertainty is irreducible. Methodological directions
to estimate uncertainty quantities include the aggregation of
multiple neural networks [36], deterministic networks with
distributional assumptions placed on the label space [37], [38],
sophisticated use of dropout networks [39], or the Bayesian
neural networks [40], [41]. Domain-specific applications in
the remote sensing area are still rare [42], [43].

Calibration is a closely related concept, which in the con-
text of classification tasks aims at providing more reliable
predictions. In particular, the probabilities derived from a
machine learner should adequately describe the certainty inher-
ent in the prediction. Originally proposed for support vector
machines [44], Platt scaling describes a parametric method
that trains an additional layer to transform the predictions of
a classifier into calibrated probabilities. A simplified version
termed temperature scaling (TS) has found its way into more
recent deep learning-based works [45], [46], [47]. Using only
a single parameter, the approach simply scales the softmax
probabilities derived from a deep learner in order to limit
overconfidence. Another famous technique is termed label
smoothing (LS) [48] and helps to overcome overconfident
predictions by artificially changing the labels during training.
Several recent works [49], [50], [51] have investigated this
method since.

As a novelty for the deep learning community, human uncer-
tainty, derived from the labeling stage of the data generation
process, has been studied [52]. Specifically, a set of images
was labeled by multiple people and therefore received votes
for potentially different classes. This rich information was then
added to the training process in order to capture human catego-
rization peculiarities [53] or make the underlying classification
task more robust [52]. Comparisons to more classic calibration
techniques such as LS were drawn in [54]. Though closely
linked, the incorporation of this additional information into
the labels stands in contrast to the widely studied research
direction of investigating label noise [1], [55], [56], which
focuses more on identifying mislabeled or anomalous data,
or pointing out insufficiently labeled data. In the field of
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TABLE I
CITIES AND ADDON AREAS IN THE EVALUATION SUBSET OF THE SO2SAT

LCZ42 DATASET

TABLE II
MANUAL SPLIT OF THE CITIES AND ADDON AREAS OF THE EVALUATION

SET INTO TRAINING DATA AND NONTRAINING DATA, WHICH WAS
IN A SECOND STEP SPLIT RANDOMLY BY HALF INTO VALIDATION

AND TESTING DATA

remote sensing, the first advances in investigating human
uncertainty have been made recently [57], [58].

III. DATA AND METHODOLOGY

A. Satellite Data

As a basis of this work, the So2Sat LCZ42 dataset [8]
is analyzed, comprising approximately 400k labeled image
patches of size 32 × 32 pixels linked each to an area of
320 × 320 m. The labels follow the classification scheme
introduced by [59]: 17 characteristic climate zones, of which
ten are defined as urban zones and seven are vegetation zones
(see Fig. 1). In the publicly available version,1 three splits for
training, validation, and testing can be chosen: A completely
random split of the data, a split at the city level where each
city is separated into geographically separated training and
testing data, and a third approach that sets aside ten cities
from different cultural zones for testing. The labeling process
was performed in a manual and labor-intensive process, which
is explained in more detail by [8] and largely follows a
classic procedure initially used in the World Urban Database
(WUDAPT) project [60]. Overall, 13 spectral bands of the
Sentinel satellite mission with varying spatial resolutions are
available from the Copernicus Hub. For the LCZ data, all four
bands with a ground sampling distance (GSD) of 10 m were
chosen, as well as the bands with a GSD of 20 m, which were
upsampled to 10 m GSD.

As an additional experiment carried out in their work, Zhu
et al. [8] launched an evaluation phase to assess the quality
of the labeling process. For this, a subset of ten European
cities was chosen to serve as reference data for the labelers;
nine additional non-European regions were included to ensure
a minimum level of class balance. Overall, the evaluation
dataset contains roughly 250k satellite image patches, which

1So2Sat LCZ42 dataset (link to download: https://mediatum.ub.tum.de/
1613658).

were cropped out of polygons from homogeneous regions. The
entire list of cities, as well as add-on areas for which the label
evaluation was performed, is given in Table I.

In order to geographically separate training and testing data,
the corresponding datasets were formed by mutually exclusive
subsets of the above cities and addon areas. The split on a city
level was specifically chosen not to avoid learning the overall
similar data distribution, as all images come from European
cities, but rather to train on one set of cities and predict as well
as evaluate the method on another set of cities. In Table II,
the cities in the respective datasets are listed. Note that for the
separation of validation and testing data, a random split of the
cities and addon areas was performed, halving the entirety of
data points into validation and testing data.

Regarding the choice of cities, next to the geographical
separation, a strong emphasis was laid on balancing the
occurring class frequencies in between the datasets. For the
investigated urban classes (LCZs 1–10), the class frequencies
of the different datasets relative to the number of samples
in the entire dataset can be found in Table III. Note that
for the ground-truth label, here the majority vote ymax as
later defined in (3) was taken. Images with incomplete label
distributions, that is, those having a majority vote from the
urban classes and one or more individual votes from the
nonurban classes occur very rarely (∼0.1%). The outlier votes
have been excluded from the analysis. As can be deduced from
Table III, the classes are not perfectly balanced among the
training, validation, and test datasets. Yet a significant effort
was spent on finding a good split on city level that still retains
a moderate level of class imbalance. This imbalance among the
datasets adds complexity to the imbalance among the different
classes already present in the data.

B. Human Uncertainty

As part of the label evaluation study, a group of ten human
remote sensing experts independently cast a label vote for
each of the polygons, resulting in a final dataset with ten
expert votes for each image. This dataset was made public
accompanying this publication and can be downloaded online.2

Transforming these expert votes into suitable labels for a
classification task can be handled in a variety of ways. Thus,
let Y = Y (1), . . . , Y (n) initially be the vote count vectors for
the images i = 1, . . . , n, where Y (i)

= (Y (i)
1 , . . . , Y (i)

K ) stores
the vote counts for each of the K LCZ classes for image
i where K = 17. By indexing the different remote sensing
experts via j = 1, . . . , J , for image i we receive the expert
votes

V (i)
1 , . . . , V (i)

J , V (i)
j ∈ {1, . . . , K } ∀i = 1, . . . , n. (1)

We define the votes as a K -dimensional vector

V (i)
j =

(
1{

V (i)
j =1

}, . . . ,1{
V (i)

j =K
}), where

1{
V (i)

j =k
} = 1 ⇔ V (i)

j = k (2)

2So2Sat LCZ42 evaluation dataset (link to download: https://mediatum.ub.
tum.de/1659039).
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TABLE III
RELATIVE CLASS FREQUENCIES OF THE URBAN CLASSES WITHIN THE TRAINING, VALIDATION AND TESTING SET. TOTALS ARE

LISTED IN THE RIGHT AND BOTTOM ENTRIES

and obtain the vote counts via Y (i)
k =

∑
j 1{V (i)

j =k}
. In particu-

lar, Y (i)
k = m means that for image i class k received m votes

and it holds that
∑K

k=1 Y (i)
k = M , where M = 10 represents

the number of votes or experts. A common strategy is to rely
on the majority vote of the experts that we define for image
i as Y (i)

max := max
j

Y (i)
j to be the class which received the most

expert votes. The associated one-hot encoded label is denoted
as a K -dimensional vector

y(i)
max =

(
1{

Y (i)
1 =Y (i)

max

}, . . . ,1{
Y (i)

K =Y (i)
max

}), where

1{
Y (i)

j =Y (i)
max

} = 1 ⇔ Y (i)
j = Y (i)

max. (3)

This simplification gives rise to the question of how much
information is lost when relying on the majority label decision.
It is argued by [8], that majority voting does help to improve
label confidence. Yet part of the uncertainty in the voting
process is hidden from the classifier when it is presented with
the majority vote ymax in (3). An alternative approach is hence
to incorporate the entirety of all votes directly into the label
by forming a distributional label. To do so, we directly use the
empirical distribution formed by the observed votes and define
the soft label for image i in the following discussions via

y(i)
distr = Y (i)/M. (4)

By doing so, the mode of the distributional label coincides
with the mode of ymax (3), but the distributional form allows
for a more flexible learning approach, as other classes that
were voted for in the evaluation process are also considered.

The ten label votes received from each of the ten inde-
pendent remote sensing experts inherently store a notion of
label uncertainty. This uncertainty is visualized in Fig. 2 by
means of a confusion matrix between the individual label
votes V (i)

1 , . . . , V (i)
J and the majority vote y(i)

max for all images
i = 1, . . . , n, as well as a plot showing the entropies of
the individual label distributions. In detail, for the given
label distribution y(i)

distr [see (4)], we compute the information
theoretic (Shannon) entropy of the distribution given for image
i via

H
(

y(i)
distr

)
= −

K∑
k=1

y(i)
distr,k log y(i)

distr,k (5)

and plot the resulting values in a bar plot grouped by the
affiliation of the respective majority vote y(i)

max [see (3)] to

either the urban or nonurban classes. Whereas zero entropy
occurs when all voters agree on a label for an image, maximum
entropy is achieved for a uniform distribution across all labels
(which cannot occur here because the number of classes
exceeds the number of voters). Clearly visible is the higher
average entropy of the vote vectors for the urban classes,
which corresponds to a higher uncertainty associated with the
respective satellite images. We chose to limit our analysis to
the urban classes due to the large share of images with the
majority vote belonging to nonurban classes that at the same
time have zero entropy in the votes.

C. Training Process

In the following, let {x(i), y(i)
}i=1,...,n ∈ (X × Y)n be the

classification data: x(1), . . . , x(n)
∈ X are the multispectral

LCZ42 image patches, and y(1), . . . , y(n)
∈ Y are the corre-

sponding labels. Furthermore, let fθ (x) be a neural network
classifier based on the parameters stored in θ . Given an input
x ∈ X , the predictive distribution of the network is denoted by
pθ (y|x), and pθ (y = k|x) returns the estimated probability of
x belonging to class k. For training, typically the cross-entropy
loss is used in a classification setting. From an information
theory perspective, the cross-entropy defines the amount of
additional information needed to approximate a sample from
the source distribution.

However, in the literature for the recently presented research
field of label distribution learning, the Kullback-Leibler (KL)
divergence has been established as a loss function [2]. Given a
true distribution, the KL divergence measures the information
lost when the target distribution is used as an approximation.
It measures the dissimilarity between two probability functions
and is therefore also termed relative entropy.

If we now assume for the So2Sat LCZ42 data that the distri-
bution formed by the votes of the ten remote sensing experts is
the ground truth label distribution, we can measure the dissim-
ilarity between the predicted and the ground truth distribution
with the KL divergence. When implemented as a loss function,
it is derived for a batch of data {x(i), y(i)

distr}i=1,...,m via

LKL

(
fθ , x(1), . . . , x(m), y(1)

distr, . . . , y(m)
distr

)
= −

1
m

m∑
i=1

K∑
k=1

y(i)
distr,k · log

y(i)
distr,k

pθ

(
y(i) = k|x(i)

) . (6)
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Fig. 2. (a) Confusion matrix of label votes for the evaluation dataset. (b) Entropies of the voting distributions.

Note that for y(i)
distr,k = 0 we set y(i)

distr,k · log y(i)
distr,k/(pθ ( y(i)

=

k|x(i))) ≡ 0. This approach is taken to measure the informa-
tion loss when using the predictive distribution of the neural
network to approximate the assumed ground truth distribution
over labels. Consequently, training with the KL divergence
describes the process of iteratively finding a neural network
mimicking human voting behavior.

D. Calibration and Generalization

Neural network classifiers are often prone to overcon-
fidence, namely that predicted probabilities for a class
overestimate the percentage of times the algorithm actually
yields a correct prediction [46]. In this circumstance, derived
uncertainty quantities are not reliable, because the underlying
probabilities are ill-defined in the first place. Therefore, one
can speak of a frequentist notion of uncertainty when referring
to calibration [36]. Deviations from the perfectly calibrated
model can be measured with different error rates, of which the
expected calibration error (ECE) is the most prominent one.
It can be visualized in a so-called reliability diagram [61],
[62], which displays the accuracy versus the corresponding
confidence in a single plot, averaged over predefined intervals.
Following the notation of [46], we denote these bins by
Bm = ((m − 1)/M, (m/M)], m = 1, . . . , M and define the
indices of the images whose confidences p̂(i) fall into the
respective bin by Im, m = 1, . . . , M . The needed quantities
are then calculated by

acc(Im) =

∑
i∈IM

1{
ŷ(i)= y(i)

max

} and conf(Im) =

∑
i∈Im

p̂(i) (7)

and displayed in a 2-D plot with respect to the earlier defined
intervals. Here, ŷ(i) is the one-hot encoded predicted class for
input x(i), p̂(i) the corresponding predicted probability, and
one defines y(i)

max as in (3). The ECE is then derived via

ECE =

M∑
m=1

|Im |

n
|acc(Im) − conf(Im)|. (8)

A simpler version of the ECE, which only considers the
maximum gap between confidence and accuracy out of all
bins considered, is the maximum calibration error (MCE).
Given the predictions ŷ(i)

, i = 1, . . . , n and corresponding
confidences p̂(i), i = 1, . . . , n, the computation is as follows:

MCE = max
m

|acc(Im) − conf(Im)|. (9)

While the MCE gives a first indication whether the evaluated
classifier is severely miscalibrated for a certain bin, the same
downside appears as for the ECE, namely that the included
metrics are not considered class-specific. For this purpose,
Nixon et al. [63] introduced the static calibration error (SCE),
which measures the accuracies and confidences on a class
level. For class k and within bin m, these are depicted by
acc(m, k) and conf(m, k), leading to the formula for the SCE
given by

SCE =
1
K

K∑
k=1

M∑
m=1

nmk

n
|acc(m, k) − conf(m, k)| (10)

where nbk denotes the number of samples belonging to class
k (with respect to the majority vote) within bin b. Here, the
class-specific scores are also weighted with respect to the class
share within the respective bin.

Presented as a straightforward and effective calibration
strategy, Guo et al. [46] introduced TS. The technique can
be seen as a simplification to Platt scaling [44] which scales
the logits predicted by the classifier by a constant parameter.
So given the predicted logit of the neural classifier fθ (x) for
image i via z(i), the corresponding softmax prediction of the
scaled logit is given via

softmax
(
z(i))

=
exp

(
z(i)/T

)∑
k exp

(
z(i)

k /T
) . (11)

As described by [46], we optimized the parameter T (termed
temperature) with respect to the negative log-likelihood on
the validation dataset. Adding to that method, LS represents
another quick and easy to implement off-the-shelf calibration
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Fig. 3. Exemplary pairwise confusion between predicted class and respective majority vote for the test set. (a) One-hot encoding. (b) Label distribution
encoding.

method. As opposed to TS, the method is not applied post-
hoc, but uses a hyperparameter α to scale the labels before
training. Given the label y(i) for image i , the scaled version
is then received via

y(i)
smoothed = α · uK + (1 − α) · y(i) (12)

where uK denotes the uniform distribution over the K classes.
The hyperparameter is not directly optimized, but empiri-

cally chosen. As a third calibration option, we utilized Monte
Carlo Dropout [39]. Given the already trained networks,
we left the dropout layers of Sen2LCZ active during prediction
and by doing so created a set of 20 unique predictions. After
averaging the softmax vectors of the individual predictions,
we proceeded with deriving the calibration and generaliza-
tion metrics as before. Lastly, a deep ensemble [36] with
k = 5 ensemble members was considered. As proposed by
the authors, five identical models were trained in parallel.
Afterward, the calibration and generalization metrics were
calculated based on the average of the five predictions.

Further measures of generalization as shown in Table IV
are namely are the cross-entropies between the predictive
distribution of the network pθ (y|x) and the one-hot encoded
label based on the majority vote ymax or the distributional label
ydistr. They are termed “CE One-hot” and “CE Distr” and given
for image i via

CE
(

y(i)
max, pθ

(
y(i)

|x
))

= −

K∑
k=1

y(i)
max,k log

(
pθ

(
y(i)

= k|x
))

and (13)

CE
(

y(i)
distr, pθ

(
y(i)

|x
))

= −

K∑
k=1

y(i)
distr,k log

(
pθ

(
y(i)

= k|x
))

(14)

respectively.

IV. EXPERIMENTS

A. Setup and Settings

For the classification task, we use the model introduced by
[26] (Sen2LCZ-Net), which is a modified convolutional neural

network (CNN) using intermediate deep feature representa-
tions at multiple stages of the network. These representations
are then averaged and pooled at the end before being trans-
formed into the logit space. In particular, we used a network
depth of 17 (following from the use of four convolutional
layers in each block), a width of 16, a dropout rate of 0.2
(at the end of the second and third block), and activated
multilevel feature fusion and double-pooling. Class weights
did not lead to improved results, hence they were discarded
since also the class imbalance differed largely between the
training, validation, and testing set. The Nesterov Adam opti-
mizer implementation of Keras [64] was used for training.
An early stopping mechanism was installed, which monitored
the validation loss with a patience of 20 epochs. Weights
were saved after every epoch if and only if the validation
loss decreased. The model has been shown to be superior over
many state-of-the-art neural network architectures in extensive
benchmark tests on the So2Sat LCZ42 dataset by the authors.

LS was performed with a smoothing parameter of 0.1.
TS was implemented as described by [46] via tuning the scal-
ing parameter on the validation set with respect to minimizing
the negative log-likelihood. This minimization was performed
using the Adam optimizer implementation of Keras [64] with
a learning rate of 0.01 and a maximum of 10k iterations
(more iterations did not improve the results significantly). It is
worth noting that TS scales the logits, but does not change
the accuracy of the model, being the reason why we did not
include the metric in Table V. Regarding the hyperparameters
of Sen2LCZ, we set a batch size of 64 and an initial learning
rate of 2 × 10−3 which was gradually reduced by a factor of
0.5 every five epochs.

B. Results

Sen2LCZ-Net was trained on the training set utilizing
different labels and loss functions plus additional off-the-
shelf calibration methods. The categorical cross-entropy loss
incorporates the one-hot encoded labels based on the majority
vote of the expert votes, and the KL divergence takes the
distribution formed by the empirical distribution of the expert
votes. All models were trained using the same training and
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TABLE IV
CROSS-ENTROPIES BETWEEN PREDICTED SOFTMAX PROBABILITIES AND LABELS ON THE TEST SET AS WELL AS CALIBRATION ERRORS, AVERAGED

OVER FIVE RUNS. CE = CROSS ENTROPY, LS = LABEL SMOOTHING, TS = TEMPERATURE SCALING, MC-DROP = MONTE CARLO DROPOUT.
BINNING WAS PERFORMED USING 20 EQUALLY-SIZED BINS. ENSEMBLES TREATED SEPARATELY AS

THEY WERE NOT PERFORMED MULTIPLE TIMES

validation data. Identical hyperparameters were used (after
grid search), and the same stopping and convergence criteria
were set. In particular, the same input in the form of satellite
imagery was used in both models.

Exemplary confusion matrices of the predictions on the
test set are presented for both models in Fig. 3. Here, the
ground truth label is set to be the majority vote of the experts,
and the predicted class is defined via the highest predicted
probability of the respective network p̂ = maxk pθ (y = k|x).
First note that for most of the part, both models have the
same pitfalls of misclassifying certain classes. This holds in
particular for class 3 (compact low-rise) being falsely classified
as class 7 (lightweight low-rise), class 4 (open high-rise) being
misclassified as class 2 (compact midrise), as well as class 5
(open midrise) being classified as class 6 (open low-rise).
Adding to this claim is the strong confusion with class 8
(large low-rise), which is often falsely predicted for images
from various classes (with respect to the majority vote).

In a similar manner, images for which experts agreed on
class 9 (sparsely built) are often falsely classified as classes
6 and 8. The results regarding the majority-voted class 1 seem
rather arbitrary, however, as they largely depend on the data
distribution of the few test samples. In particular, there are
only around 30 samples of class 1 (with respect to the majority
vote) in the test set, of which none could be correctly classified
using the distributional approach. Note, however, that the high
confusion with class 4 is also visible to some extent in the
human label uncertainty. It could furthermore be the case that
those particular samples where this confusion occurs in the
data have mostly ended up in the test set. Of particular interest
is furthermore the comparison between the model confusion
and the confusion among voters. With one in every three votes
deviating from the majority vote, experts chose to vote for
class 3 in cases where the majority of experts settled for class
7. This large confusion is only slightly reflected in model
confusion.

The opposite case is matched rather closely in the pre-
dictions of both models on the test set. With more than

TABLE V
PERFORMANCE SCORES ON THE TEST SET. ACCURACY AND OTHER

RELATED MEASURES WERE DERIVED WITH RESPECT TO THE MAJOR-
ITY VOTE. ALL SCORES ARE AVERAGED OVER FIVE RUNS. OA =

OVERALL ACCURACY, MAA = MACRO AVG. ACCURACY,
WAA = WEIGHTED AVG. ACCURACY, κ = KAPPA SCORE,

LS = LABEL SMOOTHING

one in every six votes deviating from the majority vote, the
combinations of classes 4 and 5, as well as 9 and 6, are
also found to be confusing for the model in both training
cases. However, in the cases of classes 4 and 5, it seems
to be significantly less confusing for the model trained with
distributional labels. Further deviations of the model confusion
from the human confusion can be partially attributed to the
previously mentioned arbitrariness of the very low number
of affected samples in the data. All other model confusions
cannot be directly linked to the confusion in the voting process
and therefore result from difficulties entirely attributable to the
model.

We can deduce the results of the trained models in
Table V. For the distributional label approach, accuracy was
again measured with respect to majority voting, which helps
to explain the observed minor differences in performance
between the two model configurations. Although the distri-
butional approach performs on average better than the regular
approach in 3 out of 4 metrics, the macro average accuracy
lags behind by a large margin. Regarding the deviance of pre-
dictions from the true labels, Table IV shows the cross-entropy
between the two distributions on the identical test set as well as
the introduced calibration error rates (based on 20 identically-
sized bins). When trained with distributional labels, the model
can fit better toward the test label distributions when predicting
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Fig. 4. Exemplary reliability diagrams on the test set. Both visualizations were created using [65]. (a) One-hot encoding. (b) Label distribution encoding.

on the test set by a large margin. This holds true even though
the model with distributional labels was trained with the KL
divergence as loss.

While LS helps to improve the performance in both settings,
TS leads to mixed calibration performance results. The addi-
tional use of Monte Carlo Dropout was enforced via averaging
the confidences of multiple predictions with activated dropout.
While this enabled to bind the ECE to a reasonable level,
the generalization performance was nearly unaffected. The
use of an ensemble of classifiers, on the other hand, strongly
impacted the generalization performance but worsened the
calibration ability of the model. Note that we considered
the ensemble results separately, as they were not averaged
over multiple runs. This would have increased the overall
computational demand by a multiple of the number of runs.
Overall, all calibration errors benefit from the uncertainty-
guided approach, although the overall best errors are achieved
with conventional calibration techniques.

Yet more unforeseen is the cross-entropy with respect
to the one-hot encoded labels. Although the model trained
with the distributional labels uses a different loss function
and different labels, it can better approximate the one-hot
encoded test labels and underlines the strong generalization
performance of the human uncertainty models. While the
additional off-the-shelf calibration methods help to marginally
improve the cross-entropies, the ECE is negatively affected
by individual calibration methods in the distributional set-
ting. An explanation for this could be the fact that the

optimization of the temperature is prone to overfitting on the
validation dataset, leading to poor generalization when already
considering human uncertainty within the training process.
The overall better cross-entropies of the models including
human label uncertainty underline a crucial aspect of training
with distributional labels: If chosen appropriately, they keep
the model more flexible when generalizing to the test data.
When explicitly modeling label distributions, all classes with
a nonzero entry in the distribution of the label are changing
the value of the loss (as compared to the logit of the ground
truth class in the case of cross entropy training); therefore the
training is more flexible and less prone to overconfidence in
its predictions.

This phenomenon is particularly visible in Fig. 4, which
displays reliability diagrams [46] of a single run for the
two modeling approaches in an uncalibrated setting. Clearly
visible is the significantly lower ECE for the model trained
with the distributional labels, especially for the regions with
higher confidence. In these regions, the confidence is more
meaningful and is reflected better by the accuracy, resulting
in a better-calibrated model when using distributional labels.
Since calibration can be treated as the frequentist notion of
uncertainty [36], we can deduce that by incorporating the vot-
ing uncertainty into the training process, the resulting model
is better calibrated and hence yields a predictive distribution
that contains a more feasible sense of uncertainty.

Moreover, the lower part of Fig. 4 shows the overconfidence
of the one-hot encoded model, where the average confidence in
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the predictions exceeds the overall accuracy by a large margin.
On the contrary, the accuracy is almost precisely met by the
average confidence when the model has been trained with
distributional labels. Note, however, that here the accuracy was
again calculated by means of the majority vote when modeling
the distributional labels. This can lead to underconfidence (as
opposed to overconfidence in the one-hot case) because a set
of images can be classified correctly even with relatively low
average confidence if the label distributions are multimodal.

V. DISCUSSION

Generally speaking, for every deep learning model it is
desirable to find a suitable calibration technique in order to
avoid under- or overconfidence of the model in its predictions.
Especially for the field of remote sensing, this has often
been paid little attention to. Traditional methods such as
TS [44], [62] or LS [48] train additional hyperparameters
using the validation dataset for this purpose. The approach
we take here is vastly different, though it achieves similar
goals, and is closely related to the works of [52]. We claim
that incorporating human uncertainty about the labels helps
to overcome not only the poor calibration of the predicted
probabilities but also the inability to generalize well on cities
not seen during training. Given the special structure of the
studied satellite dataset, the label votes cast by ten remote
sensing experts are used to form an empirical distribution
over the classes that serve as an approximation of the inherent
human label uncertainty. This distribution is then embedded
as a distributional label for training. Due to its theoretical
properties, KL divergence is implemented as a loss function.
In order to explicitly measure the impact of human uncertainty,
the model architecture, as well as affiliated hyperparameters,
remained unchanged.

The questions we pose while forming the distributional
labels are whether this approximation (a) is sufficient and (b)
has a potential benefit for modeling purposes and downstream
tasks. The latter can be partially answered by the findings of
this work: we see a direct improvement in terms of calibration
regarding the predictive distribution when incorporating the
distributional labels for the uncalibrated baseline model. Here,
the ECE was on average almost halved. Also with regard to
the overall quality of the approximation, the model benefited
from the label distributions. An improvement of approximately
10% on average in the cross-entropy could be seen at test
time. This holds for the cross-entropy both between the
predicted probabilities and the ground truth label distributions
and between the probabilities and the one-hot encoded labels.
We see huge potential in downstream tasks that benefit from
well-calibrated probabilities, for example in the presence of
ambiguous or hand-crafted labels.

As for the first question posed, one has to bear in mind
that labeling images is a labor-intensive process. This holds
especially true when there is a need for experts in the field
of remote sensing. A natural question is therefore whether it
would be more beneficial to have a larger number of images
or individual votes overall. We see this question as a very
promising research direction and will leave it for future work.
Adding to that, we would like to note that we see potential
of the approach also for more fine-grained applications in

remote sensing such as pixel-level segmentation. In these
tasks, label ambiguity is a much more complex problem, as the
transition between classes is not always indicated by a clear
line. Similarly, a patch that has a single label in a classification
setting can have multiple labels in a segmentation setting.
A better-calibrated model with more reliable uncertainty esti-
mates would therefore be particularly helpful to represent
the underlying ambiguity. To the best of our knowledge,
no large-scale dataset with multiple human annotations exists
in this domain. Although this would come with a much higher
annotation cost, we see many benefits in creating such a dataset
for the aforementioned reasons.

In conclusion, we see clear benefits of the proposed
approach, namely stronger generalization performance and
better calibrated predictive probabilities, hence more trustwor-
thy resulting uncertainties. At the same time, the approach
is currently limited to datasets with multiple annotations per
image, which are very costly to obtain. Note also that ideally
the labeling should be done by domain experts so that the
resulting labels reflect reliable human label uncertainty.

VI. CONCLUSION

In this work, we examine the impact of employing human
uncertainty in the classification process of satellite images into
LCZs. We apply our methodology to the So2Sat LCZ42 data,
covering several large European cities as well as additional
areas from all over the world. Ten expert label votes are
supplied for each satellite image, which comprise a notion
of uncertainty within the classification task. Forming a label
distribution from these votes allows us to directly implement
the human uncertainty linked to the voting process into the
network training. To do so, we employ the framework of label
distribution learning, which enables the model to better adapt
to the uncertainty rooted in the labels.

When label uncertainty is incorporated into training,
an improvement in the generalization performance of the
model can be measured for the remote sensing dataset studied.
The overall loss when generalizing to the test data was reduced
on average by a margin of approximately 10%. Off-the-shelf
calibration methods such as LS or TS lead to improved
performance competitive to the uncertainty-guided approach,
yet while requiring additional data for hyperparameter tuning.
The ECE, a key measure of calibration quality, is almost
halved in the majority of experiments by means of the
embedded human label uncertainty when no further calibration
technique is applied. The improved calibration and general-
ization performance of the uncertainty-guided approach can
be directly converted to a more feasible notion of predictive
uncertainty. This is because the predictive probabilities of the
network when generalizing to the test data, yield more reliable
estimates of the label distributions associated with the test data.
We see promising applications in the remote sensing field that
could benefit from the explicit incorporation of human (label)
uncertainty into the training process.
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