Koller, Christoph und Kauermann, Göran und Zhu, Xiao Xiang (2023) Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty Improve Model Performance in Earth Observation? IEEE Transactions on Geoscience and Remote Sensing (62), Seiten 1-11. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3336357. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
10MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10354049
Kurzfassung
Technological and computational advances continuously drive forward the field of deep learning in remote sensing. In recent years, the derivation of quantities describing the uncertainty in the prediction, which naturally accompanies the modeling process, has sparked interest in the remote sensing community. Often neglected in the machine learning setting is the human uncertainty that influences numerous labeling processes. As the core of this work, the task of local climate zone (LCZ) classification is studied by means of a dataset that contains multiple label votes by domain experts for each image. The inherent label uncertainty describes the ambiguity among the domain experts and is explicitly embedded into the training process via distributional labels. We show that incorporating the label uncertainty helps the model to generalize better to the test data and increases model performance. Similar to existing calibration methods, the distributional labels lead to better-calibrated probabilities, which in turn yield more certain and trustworthy predictions.
elib-URL des Eintrags: | https://elib.dlr.de/201482/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty Improve Model Performance in Earth Observation? | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 12 Dezember 2023 | ||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/TGRS.2023.3336357 | ||||||||||||||||
Seitenbereich: | Seiten 1-11 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Calibration, classification, human uncertainty, local climate zones (LCZs), uncertainty quantification (UQ) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Jena , Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Datenwissenschaften | ||||||||||||||||
Hinterlegt von: | Koller, Christoph | ||||||||||||||||
Hinterlegt am: | 09 Jan 2024 15:13 | ||||||||||||||||
Letzte Änderung: | 29 Jan 2024 13:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags