Koller, Christoph and Jung, Peter and Zhu, Xiao Xiang (2023) Exploring Distance-Aware Uncertainty Quantification for Remote Sensing Image Classification. In: 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, pp. 5692-5695. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, USA. doi: 10.1109/IGARSS52108.2023.10281435. ISBN 979-835032010-7. ISSN 2153-6996.
PDF
598kB |
Official URL: https://ieeexplore.ieee.org/abstract/document/10281435
Abstract
Deep Learning models for classification often suffer from overconfidence, which naturally results in poor predictive uncertainty estimates. To overcome this, many calibration techniques have been established. These techniques operate on the labels or the output space of the network but ignore the input image space. A recently proposed approach considers the distances between different network inputs explicitly and theoretically propagates the distances through the network. The resulting predictive uncertainties of the model are then able to better reflect these distances. We test this approach in the context of remote sensing image classification for land use. To evaluate the predictive uncertainties, we set up an Out-of Distribution (OoD) detection framework based on class separation.
Item URL in elib: | https://elib.dlr.de/201480/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Exploring Distance-Aware Uncertainty Quantification for Remote Sensing Image Classification | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2023 | ||||||||||||||||
Journal or Publication Title: | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10281435 | ||||||||||||||||
Page Range: | pp. 5692-5695 | ||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||
ISBN: | 979-835032010-7 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Land Use, Classification, Uncertainty Quantification, Out-of-Distribution (OoD), OoD Detection, Residual Network, Spectral Normalization | ||||||||||||||||
Event Title: | IGARSS 2023 | ||||||||||||||||
Event Location: | Pasadena, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 16 July 2023 | ||||||||||||||||
Event End Date: | 21 July 2023 | ||||||||||||||||
Organizer: | IEEE GRSS | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Institute of Data Science Institute of Optical Sensor Systems | ||||||||||||||||
Deposited By: | Koller, Christoph | ||||||||||||||||
Deposited On: | 09 Jan 2024 15:10 | ||||||||||||||||
Last Modified: | 24 Apr 2024 21:02 |
Repository Staff Only: item control page