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ABSTRACT

Deep Learning models for classification often suffer from
overconfidence, which naturally results in poor predictive un-
certainty estimates. To overcome this, many calibration tech-
niques have been established. These techniques operate on
the labels or the output space of the network but ignore the in-
put image space. A recently proposed approach considers the
distances between different network inputs explicitly and the-
oretically propagates the distances through the network. The
resulting predictive uncertainties of the model are then able
to better reflect these distances. We test this approach in the
context of remote sensing image classification for land use.
To evaluate the predictive uncertainties, we set up an Out-of
Distribution (OoD) detection framework based on class sepa-
ration.

Index Terms— Land Use, Classification, Uncertainty
Quantification, Out-of-Distribution (OoD), OoD Detection,
Residual Network, Spectral Normalization

1. INTRODUCTION

When performing a classification task, we rely on a model
output for the classification decision. Often the model yields a
predictive probability which indicates its confidence. Prefer-
ably, we would also like to receive a notion of the model’s
uncertainty hinting at data points the model struggles to clas-
sify. This uncertainty, if trustworthy, is beneficial for down-
stream applications such as out-of-distribution (OoD) detec-
tion and active learning. Generally, we can distinguish be-
tween deterministic and probabilistic approaches, where the
latter includes approaches with both multiple models and for-
ward passes [1]. While probabilistic approaches generally
achieve good performance results, deterministic approaches
are less complex and there promising for onboard architec-
tures. They have shown competitive results in some machine
learning benchmarks [2] and good performance for the task
of OoD detection in Remote Sensing (RS) [3].

Whereby many approaches rely on heuristic arguments,
we here follow a deterministic approach [4] with theoretical
justification. The approach combines residual networks with

a Gaussian process output layer on top. As another peculiar-
ity, the weight matrices are spectrally normalized. The core
idea is shown in Figure 1. By using this construction, the
authors give theoretical justification for a sensitivity towards
distances in the model’s input space. In the remainder of the
paper, the approach is briefly summarized and experiments
based on OoD detection within remote sensing image classi-
fication are conducted.

Fig. 1: General framework for distance-aware uncertainty
quantification [5] with residual network architectures. No-
tation and discussion given in Section 2.

2. METHODOLOGY

Following [4], in order to have representative uncertainties, a
sense of awareness of the input data needs to be established.
Once given this awareness, measures of uncertainty based on
the predictive distribution adequately reflect the distance be-
tween instances in the input space. The authors describe the
input distance awareness by requiring an uncertainty mea-
sure u : F(X ) → R+, operating on the output space of the
network F , where X denotes the input space of the network.
The uncertainty measure needs to reflect the distance between
a new point x ∈ X and the training data Xtrain ⊂ X with re-
spect to a suitable metric d : X × X → R+, e.g., of the form
dX(x1, x2) = ∥x1 − x2∥X , x1, x2 ∈ X . More precisely,
it is assumed that u can be represented with a monotonically
increasing function v : R+ → R+ as follows:

∀x ∈ X : u(x) = v(Ex′∼Xtraind(x, x
′)) (1)
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The authors in [4] state that in a classification setting, for
a logit of a neural network logit(x) = g ◦ h(x) to be input
distance aware, the output mapping g is supposed to be dis-
tance aware and the hidden mapping h (almost) distance pre-
serving. Distance preservation is essentially equivalent to a
bi-Lipschitz constraint on the hidden mapping h, i.e., there
exists constants 0 < L1 ≤ 1 ≤ L2 such that

L1 · dX(x, x′) ≤ dX(h(x), h(x′))︸ ︷︷ ︸
Input distance sensitivity

L1 · dX(x, x′) ≤

Feature space smoothness︷ ︸︸ ︷
dX(h(x), h(x′)) ≤ L2 · dX(x, x′) (2)

holds for all x, x′ ∈ X . When considering residual net-
work architectures (ResNets) [6], the hidden mapping is of
the form h(x) = hl ◦ hl−1 ◦ ... ◦ h1(x) , where hj(x) =
x + γj(x) , j = 1, . . . , l are the residual blocks. The bi-
Lipschitz condition is then fulfilled if and only if the resid-
ual mappings γj(x) of the residual blocks are α-Lipschitz for
0 < α < 1 onX . This condition is already sufficient since the
concatenation of α-Lipschitz functions is again α-Lipschitz
[7]. Given the l residual blocks, the Lipschitz constants of the
concatenation result in

0 < L1 = (1− α)l < 1 < L2 = (1 + α)l <∞ . (3)

If the dataset would span the entireRn equipped with the Eu-
clidean norm (and Bi-Lipschitz continuity is supposed to hold
true on this entire space), the condition α < 1 corresponds
to controlling the spectral norm (largest singular value λ) of
the weight matrix Wj of γj . In other non-trivial cases how-
ever, one has to resort to approximations anyway. For exam-
ple, a simple and effective technique to approximate λ during
training can be done by the power iteration [8]. In particu-
lar, for each layer j = 1, . . . , l, we update the weight matrix
via Wj ← c · Wj/λ̂ if c < λ̂. Here, λ̂ is the approxima-
tion for λ obtained by the power iteration and c is a further
hyper-parameter to practically control the exact upper bound
depending on the input data.

For the output mapping g to be distance-aware, the au-
thors in [4] propose to model g as a Gaussian process (GP) [9]
on the hidden mapping output space H := {h(x) : x ∈ X}
specified by a mean function m(h) and a covariance function
k(h, h′). The latent process is assumed to be uninformative a
priori with a mean of 0 and the input awareness is accounted
for by placing a radial basis function (RBF) kernel. All hid-
den representations of the input data are then exposed to the
process, after this the posterior gets optimized. Due to com-
putational and analytical intractability, the authors propose (i)
a Random Fourier Feature expansion [10] of the initial GP
followed by (ii) a Laplace approximation for the posterior.
We refer the interested reader to [4].

Generally, the posterior GP easily calculates an uncer-
tainty via the posterior variance. Since the posterior here is
only approximated, the predictive uncertainty score can be

e.g. calculated via the Dempster-Shafer metric (DSM) (pro-
posed by the authors in [4]):

u(x) =
K

K +
∑K

k=1 exp(gk(x))
(4)

where gk(x) denotes the approximation of the kth logit via
the posterior GP and K equals the number of classes. Alter-
natively, we can treat the value of one minus the maximum
softmax probability (MSP) of the prediction as an uncertainty
measure.

3. EXPERIMENTAL RESULTS & VALIDATION

Within the task of remote sensing image classification, we fo-
cus on land use classification making use of the benchmark
dataset Eurosat [11]. The dataset contains 27,000 labeled
Sentinel-2 satellite images, equally distributed among the 10
land use classes. The classes are well distinguishable and
deep learning models have been shown to perform well on the
classification task. In order to set up an evaluation framework
for the proposed uncertainty quantification approach SNGP,
the dataset is divided into building classes (classes 4 and 7,
or industrial buildings and residential buildings, respectively)
and vegetation classes (remaining classes). As can be seen
in Figure 2, the classes are generally well separable into ID
and OoD, but overall semantic similarities remain. While the
network gets trained according to the SNGP approach on one
of the subsets, this subset is considered in-distribution (ID),
while the other subset is used for uncertainty evaluation and
is considered OoD.

Fig. 2: Example images from the Eurosat [11] dataset, split
into ID and OoD.

The experiments in this work are largely based on the code
implementation from [12]. For the core network, we consider
a ResNet50 [6] and a WideResnet [13] with a depth of 28
and a single filter, as the use of multiple filters and the same
depth was found to be inferior. The networks were trained
with a piecewise constant learning rate initiated at 0.1 (0.01
for ResNet50) and decaying every 5 epochs with a ratio of
0.1. Training was performed via Stochastic Gradient Descent
(SGD) with Nesterov momentum of 0.9 for 20 epochs. Re-
garding the spectral normalisation, a single power iteration
was performed and the aforementioned hyper-parameter was
set to c = 6 as proposed by the authors in [4]. The Gaus-
sian process was initiated with a hidden dimension of 1024, a
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ID Data OoD Data Method NLL ↓ AUROC ↑ AUPR ↑
DSM MSP DSM MSP

Vegetation classes Building Classes

WideResNet 0.93 0.32 0.65 0.32 0.59
WideResNet-SN 0.94 0.17 0.74 0.34 0.66
WideResNet-GP 1.10 0.26 0.65 0.36 0.60
WideResNet-SNGP 1.38 0.21 0.63 0.35 0.57

Vegetation classes Building Classes

ResNet50 3.27 0.50 0.62 0.55 0.55
ResNet50-SN 4.24 0.43 0.42 0.42 0.41
ResNet50-GP 3.82 0.65 0.45 0.54 0.44
ResNet50-SNGP 3.58 0.52 0.43 0.59 0.43

Table 1: Experimental results on the Eurosat [11] dataset. NLL = negative log-likelihood on the ID test set, AUROC =
area under receiver operator curve, AUPR = area under precision recall curve, DSM = Dempster-Shafer metric, MSP = 1 -
maximum softmax probability. AUROC and AUPR are based on a binary classifier distinguishing ID and OoD data by means
of the respective predictive uncertainty quantity (OoD samples are expected to have higher uncertainties than ID samples).

RBF kernel with a bias of 0 and a length-scale parameter of 1
was used. For the kernel amplitude a value of 15 was chosen
empirically in the case of the WideResNet, and a value of 1
in the case of the ResNet50. All other hyper-parameters were
left unchanged (based on experiments with Cifar-10 from the
original authors in [12]).

Table 1 shows quantitative results of the earlier described
experiments. For each network, the plain network is com-
pared with the addition of spectral normalization (-SN), with
the use of a Gaussian process classification head (-GP), and
with the full approach explained in [4] (-SNGP). For the OoD
detection with WideResNets, a few interesting aspects can be
highlighted. Overall, the Dempster-Shafer metric does not
seem to adequately capture the uncertainty within the log-
its, since there lies a large gap between the AUROC and
AUPR of the DSM and the MSP for all configurations. Also,
surprisingly the test loss does not always correlate with the
OoD detection performance, as the plain WideResNet has the
overall lowest loss but lacks behind the WideResNet-SN for
the AUROC and AUPR (both for DSM and MSP). Includ-
ing the spectral normalisation of the weight matrices seems
to add value to almost every configuration, with the AUROC
via DSM being the only exception for the WideResNet. The
Gaussian process, on the other hand, has mixed effects. Note
that the GP configuration comes with many hyper-parameters,
which are to be controlled and which can greatly impact the
model performance.

In the case of the ResNet50, the first point worth mention-
ing is the vastly shifted scale on which the NLL of the test set
lies. This cannot easily be explained, but possible reasons can
be given by the higher complexity of the model interchanging
with the complexity of spectral normalisation and the Gaus-
sian process, as well as the limited amount of resources spent
on hyper-parameter optimization within this work. Surprising
at the same time is the strong performance of the Dempster-
Shafer metric. While the spectral normalisation here seems
to have mostly negative impact on the performance, the use

of the Gaussian process output layer improves the AUROC in
combination with the DSM. The full SNGP model can only
lead to a performance gain in a single configuration, namely
for the AUPR via DSM.

Figure 3 displays the binned predictive uncertainties and
ROC curves for the two networks considered. Note that while
the resulting AUROC is almost identical, the predictive un-
certainties for both ID and OoD samples largely differ. The
WideResNet yields a wide range of predictive uncertainties,
therefore especially for higher predictive uncertainties, it is
hard to differentiate ID and OoD samples. The ResNet50, on
the other hand, predicts generally very low uncertainty sam-
ples for ID data, therefore it becomes easier to identify OoD
samples the higher the predictive uncertainty is.

4. CONCLUDING REMARKS
The methodology stated in this work cleverly combines
spectrally normalized weight matrices with a distance-aware
Gaussian process as output layer. By doing so, theoretical
guarantees can be given on the input distance preservation
throughout the network, which in turn yield reliable predic-
tive uncertainty estimates. Although the structural changes of
the SNGP approach to an existing network are relatively few,
the complexity of the optimization is manifold. We believe
there exists unleashed potential for the application in remote
sensing image classification which we leave for future works
to explore.
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