Koller, Christoph und Jung, Peter und Zhu, Xiao Xiang (2023) Exploring Distance-Aware Uncertainty Quantification for Remote Sensing Image Classification. In: 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, Seiten 5692-5695. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, USA. doi: 10.1109/IGARSS52108.2023.10281435. ISBN 979-835032010-7. ISSN 2153-6996.
PDF
598kB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10281435
Kurzfassung
Deep Learning models for classification often suffer from overconfidence, which naturally results in poor predictive uncertainty estimates. To overcome this, many calibration techniques have been established. These techniques operate on the labels or the output space of the network but ignore the input image space. A recently proposed approach considers the distances between different network inputs explicitly and theoretically propagates the distances through the network. The resulting predictive uncertainties of the model are then able to better reflect these distances. We test this approach in the context of remote sensing image classification for land use. To evaluate the predictive uncertainties, we set up an Out-of Distribution (OoD) detection framework based on class separation.
elib-URL des Eintrags: | https://elib.dlr.de/201480/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Exploring Distance-Aware Uncertainty Quantification for Remote Sensing Image Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2023 | ||||||||||||||||
Erschienen in: | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10281435 | ||||||||||||||||
Seitenbereich: | Seiten 5692-5695 | ||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||
ISBN: | 979-835032010-7 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Land Use, Classification, Uncertainty Quantification, Out-of-Distribution (OoD), OoD Detection, Residual Network, Spectral Normalization | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||
Veranstaltungsort: | Pasadena, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||
Veranstalter : | IEEE GRSS | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Datenwissenschaften Institut für Optische Sensorsysteme | ||||||||||||||||
Hinterlegt von: | Koller, Christoph | ||||||||||||||||
Hinterlegt am: | 09 Jan 2024 15:10 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags