Winkelbauer, Dominik and Bäuml, Berthold and Triebel, Rudolph (2023) Learning-Based Real-Time Torque Prediction for Grasping Unknown Objects with a Multi-Fingered Hand. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023. IEEE. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023), 2023-10-01 - 2023-10-05, Detroit, USA. doi: 10.1109/IROS55552.2023.10341970. ISBN 978-166549190-7. ISSN 2153-0858.
PDF
5MB |
Official URL: https://ieeexplore.ieee.org/document/10341970
Abstract
When grasping objects with a multi-finger hand, it is crucial for the grasp stability to apply the correct torques at each joint so that external forces are countered. Most current systems use simple heuristics instead of modeling the required torque correctly. Instead, we propose a learning-based approach that is able to predict torques for grasps on unknown objects in real-time. The neural network, trained end-to-end using supervised learning, is shown to predict torques that are more efficient, and the objects are held with less involuntary movement compared to all tested heuristic baselines. Specifically, for 90 % of the grasps the translational deviation of the object is below 2.9 mm and the rotational below 3.1°. To generate training data, we formulate the analytical computation of torques as an optimization problem and handle the indeterminacy of multi-contacts using an elastic model. We further show that the network generalizes to predict torques for unknown objects on the real robot system with an inference time of 1.5 ms.
Item URL in elib: | https://elib.dlr.de/197492/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||
Title: | Learning-Based Real-Time Torque Prediction for Grasping Unknown Objects with a Multi-Fingered Hand | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2023 | ||||||||||||||||
Journal or Publication Title: | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IROS55552.2023.10341970 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||
ISBN: | 978-166549190-7 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Robotics, Grasping, Machine Learning, Deep Learning | ||||||||||||||||
Event Title: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023) | ||||||||||||||||
Event Location: | Detroit, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 1 October 2023 | ||||||||||||||||
Event End Date: | 5 October 2023 | ||||||||||||||||
Organizer: | IEEE/RSJ | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Autonomous learning robots [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||
Deposited By: | Winkelbauer, Dominik | ||||||||||||||||
Deposited On: | 22 Sep 2023 14:31 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:57 |
Repository Staff Only: item control page