
Learning-based Real-time Torque Prediction for Grasping Unknown
Objects with a Multi-Fingered Hand

Dominik Winkelbauer1,2, Berthold Bäuml1,3, Rudolph Triebel1,2

Abstract— When grasping objects with a multi-finger hand,
it is crucial for the grasp stability to apply the correct torques
at each joint so that external forces are countered. Most
current systems use simple heuristics instead of modeling the
required torque correctly. Instead, we propose a learning-
based approach that is able to predict torques for grasps on
unknown objects in real-time. The neural network, trained
end-to-end using supervised learning, is shown to predict
torques that are more efficient, and the objects are held with
less involuntary movement compared to all tested heuristic
baselines. Specifically, for 90% of the grasps the translational
deviation of the object is below 2.9mm and the rotational below
3.1◦. To generate training data, we formulate the analytical
computation of torques as an optimization problem and handle
the indeterminacy of multi-contacts using an elastic model. We
further show that the network generalizes to predict torques
for unknown objects on the real robot system with an inference
time of 1.5ms. Website: dlr-alr.github.io/grasping/

I. INTRODUCTION

Data-driven grasping allows planning grasps for unknown
objects based on incomplete observations. While many ap-
proaches target parallel jaw grippers, also approaches appli-
cable to multi-finger hands become more prominent. Usually,
the grasp planner only determines the configuration of the
grasp, meaning the pose of the hand base and the joint angles.
However, to actually perform a grasp, it is also necessary to
set at each joint the torque that should be applied. Especially
for multi-finger hands, the correct setting of these torques
is crucial for the stability of the grasp (see Fig. 1). A
wrong set of torques can lead to involuntary shifting or
rotation of the object or even to dropping it. Additionally, by
choosing suitable torques for a given situation, unnecessary
high torques for light objects can be reduced. This leads to
less energy consumption and less strain on the hand and
object. Nevertheless, most grasping approaches neglect this
topic and just use standard torque settings across all objects.

There exist methods that are able to find a set of torques
that balance the external wrench for a given grasp. Most of
them target precision grasps which require that each finger
touch the object in at most one contact. However, we do
not want to restrict the space of possible grasps and also
target power grasps which have many interlinked hand object
contacts. Approaches that allow such power grasps, either
linearize the problem or require high amounts of computation
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Fig. 1. A grasp on the YCB bleach bottle performed using the torques
predicted by our learning-based approach. The scale and negative direction
of the forces that are applied via each finger are visualized via colored lines
in the right image together with the shape completed 3D model.

which make them unsuitable for real-time applications on
the real robot. Also, they require precise information about
contact positions and normals which are not available when
grasping unknown objects.

In this work, we propose a learning-based approach to
counter these issues. Similar to how learning-based methods
allowed predicting grasps on unknown objects in real-time,
we train a neural network to directly learn to predict the right
torques for a given grasping situation. The input to the model
consists of the hand pose, joint configuration, magnitude of
the external wrench1 and the observation of the object. We
show that our network is able to provide torques that are
efficient and hold the object still, which makes it superior to
the tested baseline heuristics. To do so, the network does not
need any detailed contact information, but only makes use of
the global shape of the object. The prediction only requires
one forward pass which makes our approach suitable for
real-time applications.

II. RELATED WORK

A. Torque Optimization

Calculating the required torques to resist a given external
force has been intensely studied. Early approaches simplify
the optimization problem by linearizing the friction con-
straint [1]. Buss et al. [2] found that the non-linear constraints
are equivalent to the positive definiteness of a specific matrix.
Han et al. [3] reformulated positive definiteness into linear

1The external wrench can either be given or can be estimated by slowly
lifting the grasped object using a torque-controlled arm. For simplicity, we
further use a conservative friction coefficient that covers all our scenarios.
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matrix inequalities which make GFO a convex optimization
problem that can be solved in polynomial time. To further
speed up the optimization process, Zheng and Qian [4]
proposes to split up the computation in an offline and an
online part. However, all of the approaches mentioned above
only support precision grasps.

In power grasps, there can be multiple contacts on one
finger or even on one link. Therefore, as shown by Bicchi [5],
contact forces cannot be individually controlled anymore. To
solve this issue, Bicchi [5] proposed to build an elastic model
of the grasp by placing springs in all contacts. This concept
was later extended to support postural synergies [6] and
underactuated hands [7]. However, Haas-Heger and Ciocarlie
[8] pointed out that the linear formulations used in the
aforementioned approaches lead to physically implausible
solutions. Haas-Heger and Ciocarlie [8] therefore proposed to
formulate the problem as a Mixed Integer Program that takes
the non-linearities into account. However, this formulation
becomes intractable for higher number of contact points.
We propose to use a non-linear evolutionary optimizer in
combination with a root finder instead. In this way, we are
able to handle a high number of contact points and found
solutions are always valid with respect to the full non-linear
constraints.

B. Torque setting in data-driven grasping

Recently, many learning-based approaches have been de-
veloped to efficiently predict stable grasps for unknown
objects. However, most of them use a simple heuristic to
determine the forces to apply when executing the grasp. Most
approaches close each finger with the same force using a
position or an impedance controller [9, 10, 11, 12] Many
methods also do not describe at all in which way they
determine the grasp forces [13, 14, 15, 16, 17], leading to the
perception that there is not much focus put on force control
when grasping unknown objects. This stands in contrast to
the observation that more sophisticated force-control strate-
gies might lead to better grasping performance [11]. Based
on that observation, we propose to set the torques based on
the given grasp and object to exactly counter the external
wrench. As computing these torques online is impossible
due to missing contact information and high computational
demands, we propose a learning-based approach that directly
predicts the required torque at each joint in real-time.

There also exist methods based on reinforcement learning,
which learn jointly the positioning of the hand and the forces
to apply [12]. While this allows more advanced force con-
trol strategies, reinforcement learning-based approaches need
well-calibrated simulator and need more training time, as the
network also needs to master motion planning. Furthermore,
the training might get stuck in local minima which leads to
sub-optimal grasp positions and torque configurations

III. TORQUE OPTIMIZATION

Given a grasp on a specific object, we look at the problem
of finding a set of torques τ ∈ RL that when applied, balance
a given external wrench w ∈ R6. In this work, we are using

Fig. 2. The DLR-Hand II [18] which we use in our experiments. Each red
dot represents a potential contact point.

the torque-controlled DLR-Hand II [18], shown in Fig. 2.
Here, each finger has four joints, however middle and distal
joints are coupled via a tendon, which leads to L = 12
actuated joints in total.

A. Problem formulation

A grasp is defined as a 6D hand pose h and a joint
configuration q ∈ RL. It results in N hand-object contacts,
each defined by its position pi and object normal ni. For a
grasp to stay stable, the contact forces {f1, ..., fN} need to
resist the external wrench w being applied to the object. This
is represented via the constraint

w = −Gf , (1)

with G ∈ R6×3N being the grasp matrix, mapping a vector
of all stacked contact forces f to the resulting wrench applied
to the object. Furthermore, the torques τ applied in the joints
need to balance the contact forces via

τ = JT f , (2)

with each torque being constraint to stay inside its limits τ ∈
[τmin, τmax]. To model the dependence between contact force
and to solve the indeterminacy of the force distribution, we
make use of the fact that hand and object are not completely
rigid, but slightly elastic (this is esp. true for the silicone
fingertips of the DLR-Hand II). So similar to Bicchi [5],
we place springs at each contact. The springs are loaded by
applying small displacements to the object ∆x ∈ R6 and to
the joints ∆q ∈ RL. Specifically, the displacement vector d,
being a stack of the displacements di ∈ R3 of the springs at
each contact point i, is defined as

d = GT∆x− J∆q . (3)

The displacements di can each be decomposed into a dis-
placement dn,i along the corresponding contact normal and
a displacement dt,i along the contact tangentials. Using the
stiffness k of the springs2, the displacements can be related
to the contact forces. The normal forces fn are defined as

2For simplicity, we assume the same stiffness for all contacts, however it
is also possible to use different values for different contacts or normal and
tangential force.
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Fig. 3. Visualization of our torque prediction network architecture. The given SDF voxelgrid is processed by four 3D convolutional layers and the resulting
feature vector is concatenated to the remaining inputs. Based on the result, four fully connected layers predict the torques to apply.

fn,i =

{
kdn,i if ni · dn,i < 0

0 if ni · dn,i ≥ 0
. (4)

The cut-off here is necessary, as the contacts are not sticky,
meaning one can only push the object along the contact
normal, but not pull it. The tangential forces ft are defined
as

ft,i =

{
kdt,i if ∥dt,i∥ < µ ∥dn,i∥
kµ ∥dn,i∥ dt,i

∥dt,i∥ else
. (5)

Here the tangential component is limited by the maximum
friction force based on the normal force fn,i and the friction
coefficient µ. This constraint is defined according to the
Coloumb friction model for hard contacts.

If a solution to the formulated constraints above can be
found, usually an infinite number of solutions exist. To make
the solution unique, we add the objective

τ∗ = argmin
τ

L∑
i=1

∥τi∥2 . (6)

In this way, the solution with minimal torques is used.
However, our formulation is also compatible with other
objectives like minimizing the contact forces.

B. Optimizer

In summary, an optimization problem can be constructed
to find ∆x and ∆q that minimize the objective (6) while
considering the constraints (1) to (5). We solve the full non-
linear problem without potentially physically implausible
linearizations. Due to the cut-off in the two non-linear
constraints, the gradient can become zero and make gradient-
based optimizers get stuck. Therefore, we chose gradient-free
evolutionary optimization. However, it turns out that applying
the optimizer to the full problem leads to suboptimal results.
Instead, we propose to split up the problem into an outer
evolutionary optimizer only considering ∆q and an inner
root finder, which finds, if possible, in each evolutionary
iteration the ∆x which fulfills (1). We run the optimizer with
a population size of 120 for 2000 iterations which takes ca.
300 s per grasp on a single CPU core.

IV. LEARNING AND APPLYING TORQUE PREDICTION

The optimizer described in the previous section is able
to find the minimal torques that are required to counter a
given external wrench. However, this system is not directly
applicable to the real robot due to multiple reasons: First,
precise contact positions and normals are required which are
not available when dealing with unknown objects and incom-
plete observations. Also, the optimization is computationally
expensive and is not able to deliver the solution in real-time.
Instead, we propose to learn the mapping

F : {o, h, q, Fg} → {τ} (7)

using a neural network F . Next to the observation of the
object o, the hand pose h ∈ R7 (position and rotation as
quaternion) and joint configuration q ∈ RL, the network
also receives the magnitude of the gravitational force Fg
as an input. In this work, we focus on learning torques
to withstand gravitational forces only. This is relevant for
pick and place tasks, one of the most common robotic
applications. However, our approach can be extended to
support any kind of external wrench.

A. Neural network architecture

The architecture of the neural network is shown in Fig. 3.
The object observation is represented as a voxelgrid of size
483 containing signed distance values. To make it easier for
the network to generalize across different grasps, the object
is transformed into the coordinate frame of the hand. For
encoding the given voxel grid, four 3D convolutional layers,
each followed by a pooling layer, are applied. The resulting
feature map is flattened to a feature vector of size 512 and
concatenated to the given hand pose, joint configuration and
magnitude of the gravitational force. Each of the additional
inputs is normalized such that their distributions in the
training dataset have a mean of zero and standard deviation of
one. The complete feature vector of size 512 is now mapped
by four fully connected layers with 1024 neurons each to
the output of size 12, representing the torques applied to
each joint. We multiply the predicted torques with the given
magnitude of the external wrench. This has the effect that the
network predicts the normalized torque vector and therefore
the norm of the predictions stays similar for different Fg.



Nevertheless, the network cannot be indifferent to the given
Fg, as, depending on the torque limits, the torques might
need to be redistributed for higher Fg.

B. Training procedure

The network is trained using supervised learning. The
training dataset is based on ca. 12 000 objects from the
ShapeNet dataset [19]. For each object, we generate grasps
using our grasping network [20]. Specifically, we let the
network predict 1024 grasps per object. Then we split
up the grasps into eight groups based on their approach
directions. From each group, we take the three grasps that
received the highest predicted grasping score. In this way,
the dataset contains diverse but still relevant grasps. In
total, this results in a dataset of around 280 000 grasps.
For each grasp j, the ground truth torques τj are generated
in the following way: First, for each grasp, we determine
the maximum gravitational force magnitude Fmax

g,j it can
withstand using the torque limits of the hand. Based on that,
we sample one counterable gravitational force magnitude via
Fg,j ∼ U(0.1N,min(20N, Fmax

g,j )). Finally, the optimization
procedure described in Section III is again used to find the
minimal torques τj which can withstand Fg,j . In this way,
we form a training sample (oj , hj , qj , Fg,j , τj). As contact
points, we use each potential contact point (see Fig. 2) that
is closer than 1mm to the object’s surface. The network is
trained for 100 000 iterations using the Adam optimizer with
a learning rate of 1× 10−4 and a batch size of 64. The loss
is calculated using an L2 loss function.

C. Combination with an impedance controller

In reality, there always exist small errors in the deter-
mination of the external wrench, the observation of the
object’s geometry and the prediction of the network. When
only applying the raw torques, such small errors could
in the worst case break the grasp. So to still be able to
stably hold the object, we apply the torques via a joint-
level impedance controller. The controller can be described
as τ = kp(qd − qm) − kdq̇, with qd being the desired and
qm being the measured joint configuration. As we assume a
static situation, where the fingers are already placed on the
surface of the object, we can ignore the velocity term kpq̇.
Thus, to set qd based on the torques τ predicted by the neural
network, the controller can be configured via

qd =
τ

kp
+ qm . (8)

In this way, the impedance controller will apply the com-
manded torques τ in the perfect case, but can still slightly
adapt them based on small errors or external influences that
occur on the real system.

V. EXPERIMENTS

A. Experimental setup

We extensively evaluate the trained network in a physics-
based simulator on a set of 536 grasps across 65 household
objects (see Fig. 4). To simulate a given grasp together

Fig. 4. The 65 objects used in the evaluation. The 20 colored objects are
from the YCB dataset [21].

with a set of torques we follow the following procedure:
The simulation starts with the object being placed on a
table and starts moving along the approach direction towards
the object and during the last 2 cm, the fingers are closed
simultaneously according to the grasp until they get in
contact. Based on the resulting joint configuration, the trained
network predicts a set of torques τ suitable for the given
gravitational force Fg. We assume Fg given except for in the
experiments in Section V-D. Now we set the desired offsets
qd of the impedance controller as described in (8). Afterward,
the table is removed, such that the full gravitational force acts
on the object (see Fig. 6 for two qualitative examples). The
grasp is marked as breaking if the objects moves more than
6mm down against gravity.

We compare our approach to two heuristic baselines: The
first heuristic, called baseline constant, applies the same
torques for each object and at each finger. The torques τbc
are set high enough such that even heavy objects can be held.
Specifically, we set the torque of each second joint to 1.6Nm
and the torque of the coupled third/fourth joint to 0.8Nm.
The second heuristic, called baseline scaled, extends this
strategy by taking the magnitude of the gravitational force
into account: τbs = (Fg/10N)τbc. Both baselines are also
combined with an impedance controller.

B. Accuracy in countering the external wrench

First, we evaluate how well the torques predicted by the
neural network can withstand the given gravitational force
Fg. Therefore, the grasp together with the predicted torques
is simulated multiple times each time using a different
gravitational force. In detail, we test each gravitational force
in the range [0N, Fg + 10N] using a step size of 0.5 and in
the end, we determine the maximum force F ′

g at which the
grasp did not break. This maximum non-breaking external
force should be as close as possible to the given gravitational
force. If F ′

g < Fg, the given torques are too small or are not
distributed correctly, such that the grasp under influence of
Fg would be not stable. If F ′

g > Fg, the given torques are
larger than necessary and are not the minimal torques.

The resulting deviations F ′
g −Fg for all tested objects are

shown in the density diagram of Fig. 5. We first evaluate
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Fig. 5. A density diagram showing the deviation of the actual breaking
force magnitude F ′

g from the desired force magnitude Fg in newton. All
grasps that did not break in the tested interval are collected at the maximum
tested deviation of 10N. So, the two baselines, which have an additional
peak there, cause deviations that are even larger than shown in the figure.

the ground truth torques found by the optimizer described
in Section III. The peak here is clearly around zero, which
is the desired outcome. The network’s predictions have a
similar peak, however, they tend to withstand more external
force than necessary. This might be caused by ambiguities
in the training labels, which make the network learn to
predict higher torques than necessary. The constant baseline
is nearly always using much higher torques than necessary.
However, based on the density around zero, there are still a
few situations where such high torques are necessary. The
baseline that scales the torques proportional to the Fg is
more efficient, however in some situations still too high.
Decreasing the scaling factor would lead to shifting the peak
around zero into the negative region which is not desired.
This shows that the size of the torques is not only dependents
on the magnitude of the external wrench but also on the grasp
itself. Our proposed neural network is capable of taking both
into account and therefore superior to the tested baselines.

Even when using the ground truth torques found by the
optimizer, there exists a difference between desired and
actual breaking force. This can be explained by multiple
factors: The simulator uses different contact points than the
ones that are used in the torque optimization. Furthermore,
it can happen that a grasp breaks but immediately slips into
a new stable configuration. In this way, it might seem that
a grasp withstands more gravitational force than its static
evaluation actually allows.

C. Object movement

To compare, how well the torques predicted by our neural
network can preserve the pose of the object, we measure the
difference in object pose between before and after applying
the predicted torques. Here we only look at the grasps which
are non-breaking under the desired gravitational force Fg.

Fig. 7a shows a density plot over the translational deviation
and Fig. 7b shows the rotational deviation of the object from
the pose it had before applying the provided torques. In both
cases, the network performs very similarly to the ground

truth torques found by the optimizer. It is able to keep for
90% of the grasps the translation below 2.9mm and the
rotation below 3.1◦. Both baselines completely fail compared
to that. Fig. 6 illustrate this behavior in more detail: In
Fig. 6a the baseline, applying the same torques at each finger,
involuntarily rotates the object, as the force applied by the
ring finger is not countered by any opposing contact. The
neural network is aware of this and therefore chooses to
mainly apply torques in the ring finger and middlefinger.
Fig. 6b depicts a usual precision grasp, where the thumb
is acting contrary to the combined force of the other three
fingers. When using the heuristic baseline, this leads to
shifting the object towards the thumb, until the thumb is
deflected to a point where the forces equal out again. The
torques predicted by the network are correctly scaled such
that this equilibrium already exists in the beginning and the
object stays still.

D. Evaluation on the real robot

We evaluate our approach on our precisely calibrated [22]
humanoid robot Agile Justin [23] by incorporating it into
our grasping pipeline: For a given object, we first observe
an incomplete 3D model using a Kinect depth camera [24].
Via shape completion, the observation is completed and used
to predict a stable grasp via our grasping network [20].
Using a learning-based motion planner [25], the hand now
approaches the object as specified by the predicted grasp.
Afterward, the fingers are closed until they contact the object.
Based on the completed object and the resulting grasp,
our proposed network now predicts suitable torques. As we
do not know the mass of the unknown object, we start
with a small estimate of the gravitational force and then
slowly increase it. At each step, we increase the lifting force
applied by the torque-controlled arm accordingly until at
some point, our estimate of the gravitational force exceeds
the actual gravitational force and the object is lifted up.
We now stop increasing our estimate any further. We found
that the predicted torques are able to stably hold the object
and reduce involuntary object movement compared to the
heuristic approaches. The forward pass of the network takes
about 1.5ms making it suitable for real-time applications.

VI. CONCLUSIONS

In this work, we presented a novel learning-based ap-
proach for predicting torques that balance for a given grasp
the external wrench. We showed that a neural network is
capable of learning the mapping from grasping pose, joint
configuration, external wrench magnitude and object obser-
vation to the corresponding set of torques. The predicted
torques are efficient and hold the object without involuntary
object shifting or rotation. In both regards our methods
clearly outperform the two tested baseline heuristics. The
network generalizes to unknown objects without requiring
detailed contact information. The prediction only requires
one forward pass taking 1.5ms which makes its application
suitable for real-time applications. To generate training data,
we formulate the analytical computation of torques as an



Baseline scaled Neural network

(a) YCB pitcher: The baseline involuntarily rotates the object.

Baseline scaled Neural network

(b) Butter box: The baseline shifts the object to the left.

Fig. 6. Multiple examples comparing how the objects deviate from their initial position when using the heuristic baseline compared to our torque prediction
network. The red dashed line represents the object’s outline in its initial pose.
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Fig. 7. Density diagrams showing the object deviation of its initial pose
after applying the torques given by the respective method. Vertical dashed
lines show the 90% quantile of each method.

optimization problem and solve the indeterminacy of multi-
contacts by using an elastic model. In the future, we plan to
extend the approach to all kinds of external wrenches and
incorporate the trained network into a closed-loop controller
that is able to actively react to changing disturbances.
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