elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Autonomous Rock Instance Segmentation for Extra-Terrestrial Robotic Missions

Durner, Maximilian und Boerdijk, Wout und Fanger, Yunis und Sakagami, Ryo und Risch, David Lennart und Triebel, Rudolph und Wedler, Armin (2023) Autonomous Rock Instance Segmentation for Extra-Terrestrial Robotic Missions. In: 2023 IEEE Aerospace Conference, AERO 2023. IEEE. 2023 IEEE Aerospace Conference, 2023-03-04 - 2023-03-11, Big Sky, USA. doi: 10.1109/AERO55745.2023.10115717. ISBN 978-166549032-0. ISSN 1095-323X.

[img] PDF
49MB

Offizielle URL: https://ieeexplore.ieee.org/document/10115717

Kurzfassung

The collection and analysis of extra-terrestrial matter are two of the main motivations for space exploration missions. Due to the inherent risks for participating astronauts during space missions, autonomous robotic systems are often consid- ered as a promising alternative. In recent years, many (in- ter)national space missions containing rovers to explore celestial bodies have been launched. Hereby, the communication delay as well as limited bandwidth creates a need for highly self-governed agents that require only infrequent interaction with scientists at a ground station. Such a setting is explored in the ARCHES mis- sion, which seeks to investigate different means of collaboration between scientists and autonomous robots in extra-terrestrial environments. The analog mission focuses a team of hetero- geneous agents (two Lightweight Rover Units and ARDEA, a drone), which together perform various complex tasks under strict communication constraints. In this paper, we highlight three of these tasks that were successfully demonstrated during a one-month test mission on Mt. Etna in Sicily, Italy, which was chosen due to its similarity to the Moon in terms of geological structure. All three tasks have in common, that they leverage an instance segmentation approach deployed on the rovers to detect rocks within camera imagery. The first application is a map- ping scheme that incorporates semantically detected rocks into its environment model to safely navigate to points of interest. Secondly, we present a method for the collection and extraction of in-situ samples with a rover, which uses rock detection to localize relevant candidates to grasp. For the third task, we show the usefulness of stone segmentation to autonomously conduct a spectrometer measurement experiment. We perform a throughout analysis of the presented methods and evaluate our experimental results. The demonstrations on Mt. Etna show that our approaches are well suited for navigation, geological analysis, and sample extraction tasks within autonomous robotic extra-terrestrial missions.

elib-URL des Eintrags:https://elib.dlr.de/195136/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Autonomous Rock Instance Segmentation for Extra-Terrestrial Robotic Missions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Durner, Maximilianmaximilian.durner (at) dlr.dehttps://orcid.org/0000-0001-8885-5334NICHT SPEZIFIZIERT
Boerdijk, WoutWout.Boerdijk (at) dlr.dehttps://orcid.org/0000-0003-0789-5970NICHT SPEZIFIZIERT
Fanger, Yunisyunis.fanger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sakagami, RyoRyo.Sakagami (at) dlr.dehttps://orcid.org/0000-0002-0149-4378NICHT SPEZIFIZIERT
Risch, David LennartDavid.Risch (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Triebel, RudolphRudolph.Triebel (at) dlr.dehttps://orcid.org/0000-0002-7975-036XNICHT SPEZIFIZIERT
Wedler, ArminArmin.Wedler (at) dlr.dehttps://orcid.org/0000-0001-8641-0163NICHT SPEZIFIZIERT
Datum:15 Mai 2023
Erschienen in:2023 IEEE Aerospace Conference, AERO 2023
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/AERO55745.2023.10115717
Verlag:IEEE
ISSN:1095-323X
ISBN:978-166549032-0
Status:veröffentlicht
Stichwörter:rock, stone, instance segmentation, autonomous manipulation, exploration, moon, analogue mission, stereo
Veranstaltungstitel:2023 IEEE Aerospace Conference
Veranstaltungsort:Big Sky, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:4 März 2023
Veranstaltungsende:11 März 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Multisensorielle Weltmodellierung (RM) [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik
Hinterlegt von: Durner, Maximilian
Hinterlegt am:16 Mai 2023 13:39
Letzte Änderung:24 Apr 2024 20:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.