Gawlikowski, Jakob und Saha, Sudipan und Niebling, Julia und Zhu, Xiao Xiang (2022) Robust Distribution-Shift Aware Sar-Optical data Fusion for Multi-Label Scene Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 911-914. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884880.
PDF
271kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9884880
Kurzfassung
Out-of-distribution (OOD) detection is an emerging research topic in remote sensing where existing works focus on single sensor analysis. However, many remote sensing works use multi-modal data to benefit from different characteristics of the sensors. Data that is in-domain for one sensor may be OOD for another sensor. In this work, we address such a scenario focusing on Synthetic Aperture Radar (SAR) and optical data fusion for multi-label scene classification. Besides data distribution shifts caused by unknown classes and snow, we also consider cases where only one modality is affected. Optical images acquired with significant cloud coverage are considered as OOD, while their corresponding SAR images can be in-distribution. We propose a weighted feature propagation strategy based on the in-distribution probabilities of the single modalities. We show, that we not only improve the prediction performance on the cloudy samples but also receive a higher predictive uncertainty when both modalities are OOD.
elib-URL des Eintrags: | https://elib.dlr.de/193323/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Robust Distribution-Shift Aware Sar-Optical data Fusion for Multi-Label Scene Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884880 | ||||||||||||||||||||
Seitenbereich: | Seiten 911-914 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Out-of-distribution detection; OOD; cloud coverage | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Datenwissenschaften | ||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:43 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags