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ABSTRACT

Out-of-distribution (OOD) detection is an emerging research
topic in remote sensing where existing works focus on sin-
gle sensor analysis. However, many remote sensing works
use multi-modal data to benefit from different characteristics
of the sensors. Data that is in-domain for one sensor may
be OOD for another sensor. In this work, we address such a
scenario focusing on Synthetic Aperture Radar (SAR) and op-
tical data fusion for multi-label scene classification. Besides
data distribution shifts caused by unknown classes and snow,
we also consider cases where only one modality is affected.
Optical images acquired with significant cloud coverage are
considered as OOD, while their corresponding SAR images
can be in-distribution. We propose a weighted feature propa-
gation strategy based on the in-distribution probabilities of the
single modalities. We show, that we not only improve the pre-
diction performance on the cloudy samples but also receive a
higher predictive uncertainty when both modalities are OOD.

Index Terms— Data Fusion, Out-of-Distribution, Uncer-
tainty Quantification, Robustness, Remote Sensing

1. INTRODUCTION

In remote sensing, data fusion is a commonly used technique
to benefit from the different modalities and at the same time
gaining additional complementary information [1]. Taking
earth observation data with different types of cloud coverage
and illumination as an example, the fusion of SAR and optical
data is beneficial as SAR is not impacted by those effects.

Recently, predictive uncertainty estimation and out-of-
distribution detection have emerged as research topic in the
machine learning community [2]. This topic has also gained
attention in the remote sensing community [3]. Especially
distribution shifts are common in remote sensing data, which
can have unpredictable effects on the behaviour of a neural
network that has never seen such shifted data before. This
effect of distribution shift leads to epistemic uncertainty af-
fecting the prediction [3, 4], since the network was never
trained on how to handle such kind of data. While handling

a distribution shift in a single-sensor setting is already chal-
lenging, handling it in a multi-sensor setting can be on one
hand even more difficult, but on the other hand also offers
new possibilities. This is because in the data fusion setting,
not all sensors necessarily experience a distribution shift si-
multaneously. One prominent example for such a situation
is the occurrence of clouds or the change in the illumination
when working with optical and SAR images. While the opti-
cal images are affected by these changes in the environment,
the SAR images do not experience any great effect. In other
words, optical images suffer from distribution shift while
SAR images do not. On the other hand, distribution shifts
which will impact both sensors are also possible, for example
due to unseen classes or snow and ice. Despite the relevance
of the topic, there has been little research on uncertainty
assessment in the context of remote sensing data fusion.

Existing predictive uncertainty estimation methods are
designed to handle single input modalities [4]. On the con-
trary, most bi-sensor fusion methods use a two-stream net-
work to process two inputs that are finally combined at the
penultimate layer or one of the middle layers of the network
[5, 6]. Thus it is not trivial to reuse existing predictive uncer-
tainty methods for estimating uncertainty in remote sensing
fusion. To circumnavigate this, we predict the in-distribution
probability for each modality before realizing the fusion step.
Following, we propagate the resulting estimated epistemic
uncertainty to the fused prediction which is given as a pre-
dicted probability for each class. We train the network in a
Siamese-like training [7], where the classifier is trained to
give a prediction for each kind of modality combination (i.e.,
in our case, SAR and optical input, only SAR input, only
optical input, no input). The case with no inputs leads to
probabilities of 0.5 predicted for each class since no evidence
for any class or against any class is available. Additional
to the fusion network, we train an OOD detector for each
modality based on in- and OOD-training data. We combine
the components in such a way that the final approach is aware
about the extent of uncertainty caused by distribution shifts
affecting the single sensors. The contributions of this work
are as follows:
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1. Introducing out-of-distribution detection in the data fu-
sion setting on single modalities before the fusion step.

2. Proposing a propagation scheme to approximate the
posterior predictive distribution including the in- distri-
bution probabilities from the single branches.

3. Introducing a training and evaluation scheme for the
adaptive fusion, based on the predicted in-distribution
probabilities.

2. APPROACH

We train a ResNet50-based [8] fusion network consisting
of two branches for the feature extraction of the optical
Sentinel-2 and the Sentinel-1 SAR data, respectively. The
two branches are fused by a concatenation based fusion layer
and a final prediction is given by the ResNet50 classifier.
In addition to the fusion layer we add an out-of-distribution
detector directly to the embedded feature spaces of the two
sensor branches. In contrast to a generic multi-class classifi-
cation scenario, where each sample is predicted as exactly one
out of multiple classes, multi-label classification gives a pre-
diction for each class. The training and inference procedure
is visualized in Fig. 1.
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Fig. 1: The considered network structure for the training (left)
and the testing (right) time. At training time, the network
receives the groundtruth and gives a prediction based on the
fused features and the single modalities, predicted with shared
weights. The embeddings are pointwise mapped to the inter-
val of [−1, 1] by σ(·). At test time, an OOD detector is used
to propagate distributional uncertainty onto the fused predic-
tion.

2.1. Data Fusion Module

For each batch the optimization step is based on three forward
passes, one with the SAR data, one with the optical data, and

one with the concatenation of the extracted SAR and opti-
cal features. Doing so, the network is trained to give proper
predictions when there is only SAR or optical data available.
After training the network this way, we use hold-out OOD
training data to train OOD detection heads for each modal-
ity in order to predict whether a sample is in-distribution or
out-of-distribution.

We consider two encoder branches fopt(·) and fSAR(·)
which encodes optical and SAR data, xopt and xSAR, respec-
tively. The fusion layer takes the encoded features fopt(xopt)
and fSAR(xSAR) as inputs and is defined as

ffuse(yopt, ySAR|λopt, λSAR) :=[λopt · σ (fopt(xopt)) ,

λSAR · σ (fSAR(xSAR))]
(1)

where λopt, λSAR ∈ {0, 1}, [·, ·] is the concatenation of the
features and σ(·) maps the input element-wise to the interval
of (−1, 1) and is defined as σ(x) := 2 · (sigmoid(x)− 0.5).
We apply σ in order to receive a more balanced contribution
among the different modalities. The classifier part of our net-
work is defined as fc(yopt, ySAR|λopt, λSAR) and concatenates
the above defined fusion layer and the classifier part of the
ResNet50.

The classification part is trained with shared network
parameters and fusion hyper parameters (λopt, λSAR) =
(1.0, 0.0), (λopt, λSAR) = (0.0, 1.0), and (λopt, λSAR) =
(1.0, 1.0), respectively. The three parallel forward passes
represent the three different cases of classification based on
the pure optical features, the pure SAR features and the fused
features of the optical and the SAR modality.

As a loss function we sum up the the binary cross-entropy
loss LBCE applied to the groundtruth ytrue and the predictions
ŷSAR, ŷopt, ŷfuse received from the three output branches:

L(ytrue, ŷSAR, ŷopt, ŷfuse) := wfuse · LBCE(ytrue, ŷfuse)

+ wSAR · LBCE(ytrue, ŷSAR)

+ wopt · LBCE(ytrue, ŷopt) ,

(2)

where wfuse, wopt, wSAR > 0 are scalar hyper-parameters for
weighting the single cases. We choose wfuse = 2, wopt =
1, wSAR = 1 but found the method to be robust on the choice.

2.2. Out-of-Distribution Detector

Building up on the modality-wise data feature encoding
branches described above, we train out-of-distribution sam-
ple detectors for each modality. For that we train simple
two-layer binary classifiers that should learn to distinguish
the resulting embeddings of in-distribution samples from out-
of-distribution samples. For this purpose, OOD samples are
needed at training time.

2.3. OOD Aware Prediction

Based on the out-of-distribution detector and the fusion
network we compute the expected predictions based on
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the in-distribution information. For this we consider λSAR
and λopt as Bernoulli-distributed random variables with
λSAR ∼ Ber(ps) and λopt ∼ Ber(po), where ps and po are
the (predicted) probabilities that the SAR and the optical
modality are in-distribution. Assuming that the two random
variables are independent, this leads to the following predic-
tion:

y = Eλopt∼Ber(ps),λSAR∼Ber(po) [fc (yopt, ySAR|λSAR, λopt)]

= (1− ps) · (1− po) · fc (yopt, ySAR|0, 0)
+ ps · (1− po) · fc (yopt, ySAR|0, 1)
+ (1− ps) · po · fc (yopt, ySAR|1, 0)
+ ps · po · fc (yopt, ySAR|1, 1) .

(3)

.

3. EXPERIMENTS

3.1. Data and Setup

For our experiments we use the multi-modal version of the
BigEarthNet dataset [9]. In addition to clean Sentinel-1 and
Sentinel-2 samples from different regions within Europe rep-
resenting 19 different classes, where we used 12 classes as
in-distribution and 7 classes as unknown OOD classes. For
the training of the OOD detectors, we used as OOD training
data all patches which only contain the classes 1 and 2 (Ur-
ban Fabric and Industrial). Similarly, as OOD test data we
used patches containing only classes 15-19 (sand/dunes and
all water related classes). Patches that contain in-distribution
and OOD classes at the same time were removed from the
dataset. The dataset also contains a set of samples affected by
clouds and seasonal snow which we will use as OOD testing
data. Further, we sample 200 patches with full cloud cover by
hand for testing.

We train our approach for 100 epochs and save the pa-
rameters for the best performances on the given validation
split. We set the loss parameters to wopt = 1, wSAR = 1
and wfuse = 2. Following this, we train the OOD detectors
for 5 epochs on the optical and the SAR branch. We apply
intensity augmentations on the OOD-data in order to get a
better sensitivity to distribution shifts. We compare the pro-
posed fusion process with considering in-distribution proba-
bilities (adaptive fusion) against the proposed training proce-
dure without in-distribution probability (non-adaptive fusion)
and the performance of optical only, SAR only and a baseline
approach trained equivalently to the once proposed by [9]. We
differentiate between different settings of in-distribution data,
left-out-classes, and different effects of clouds and shadows,
snow, and handpicked fully cloud-covered samples.

For the evaluation we consider the F1 and F2 score for
multi-label classification to measure the classification perfor-
mance and the average entropy and confidence over the sin-

gle class predictions to represent the certainty the different
approaches give on their predictions.

3.2. Results

The results are shown in Table 1. For the clear testing data
the performance of our approach is slightly below the per-
formance of the baseline model but also improves the per-
formance compared to predictions based on single modali-
ties. For the OOD classes one can see, that only the adap-
tive fusion gives a significant change in the average entropy
and confidence on the final output and hence expressing un-
certainty. The performance on data that is shifted from the
original dataset by including clouds and shadows in the opti-
cal version results in a slightly worse prediction performance
in all settings but the SAR only setting, where the perfor-
mance even improved compared to the clear test dataset. The
performance drop is significantly larger for the baseline and
the optical only approaches trained with the proposed train-
ing procedure. For the handpicked cloudy test case again all
approaches but the SAR only approach result in worse clas-
sification performance. The proposed adaptive fusion shows
the smalles drop while the baseline method and the optical
only approach show the largest ones. Only for the adaptive
fusion the average entropy increases and the average confi-
dence decreases. For the snow and ice test case, a decrease of
the classification performance appears only for the baseline
approach and the SAR only approach.

4. DISCUSSION

The presented results underline, that distributional uncer-
tainty quantification on single modalities can improve the
performance especially in the case, that one modality expe-
riences a significant change in the data distribution, resulting
in a significant drop in the classification performance on this
modality. The experiments on the clear OOD samples based
on left-out classes show the capability of detecting unknown
classes while keeping the classification performance high
on the in-distribution samples. Even though for the clear
in-distribution test data the classification performance of the
adaptive fusion is a little bit below the one of the considered
baseline, the method is significantly more robust against dis-
tribution shifts. The weaker performance might be explained
by the very simple OOD detectors and a possibly weaker
performance of the OOD detector on the SAR modality.
The increase in the classification performance in the SAR-
only model when comparing the clear and the cloudy data
can be explained by a different class distribution in the two
datasets and is negligible at this point. Besides the classi-
fication results, also the predictive uncertainty is of interest
for a user and indicated by the average minimum entropy
and the average confidence of the single class predictions.
Here, the experiments show that the predictive uncertainty
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Table 1: Overview over the performance on the classification and the OOD detection task for the considered baseline, the
optical branch, the SAR branch and the proposed training procedure without adaptive fusion and OOD detection and the
proposed adaptive fusion approach.

Testing
dataset

Baseline
Fusion

Non-Adaptive
Fusion

Adaptive
Fusion

Optical Only SAR Only

Clear

F1 Score 77.90 76.86 76.52 75.29 67.28
F2 Score 77.56 77.59 77.07 75.29 66.60
Avg. Entropy 0.318 0.207 0.302 0.303 0.408
Avg. Confidence 0.903 0.938 0.903 0.909 0.872

OOD Classes
(clear)

Avg. Entropy 0.306 0.237 0.932 0.347 0.337
Avg. Confidence 0.900 0.922 0.577 0.888 0.895

Clouds and
Shadows

F1 Score 71.62 75.48 75.25 68.14 70.54
F2 Score 71.62 76.23 75.94 68.21 70.50
Avg. Entropy 0.343 0.190 0.302 0.320 0.339
Avg. Confidence 0.896 0.943 0.906 0.904 0.894

Cloudy
Handpicked

F1 Score 38.92 62.25 69.56 38.41 70.50
F2 Score 37.27 61.61 70.52 36.68 71.75
Avg. Entropy 0.310 0.194 0.411 0.348 0.195
Avg. Confidence 0.908 0.940 0.866 0.895 0.897

Snow
and Ice

F1 Score 72.43 76.24 75.85 76.26 62.99
F2 Score 70.13 77.30 76.89 76.89 61.84
Avg. Entropy 0.224 0.203 0.255 0.305 0.368
Avg. Confidence 0.926 0.939 0.922 0.905 0.882

received from the adaptive fusion approach, seam to draw an
improved representation of the predictive uncertainty when
the classification is affected by distribution changes.

5. CONCLUSION

In this work we presented an approach for fusing optical and
SAR data while taking the distribution of the known train-
ing data into account. The prediction is given as an expected
prediction, taking the in-distribution probabilities of the sin-
gle modalities into account. The proposed method has shown
great potential in making data fusion approaches more robust
to distribution changes. In the future, we want to evaluate
the performance in a much broader setup with a special fo-
cus on region shifts, try out new out-of-distribution detection
approaches and evaluate the applicability of including other
sources of uncertainties (e.g., aleatoric uncertainty) during the
fusion process. Further the evaluation of contradictive infor-
mation from the different modalities and different fusion lay-
ers will be part of future research.
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