Winkelbauer, Dominik and Bäuml, Berthold and Humt, Matthias and Thuerey, Nils and Triebel, Rudolph (2022) A Two-Stage Learning Architecture That Generates High-Quality Grasps for a Multi-Fingered Hand. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), 2022-10-23 - 2022-10-27, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9981133. ISBN 978-166547927-1. ISSN 2153-0858.
PDF
2MB |
Official URL: https://ieeexplore.ieee.org/document/9981133
Abstract
In this work, we investigate the problem of planning stable grasps for object manipulations using an 18-DOF robotic hand with four fingers. The main challenge here is the high-dimensional search space, and we address this problem using a novel two-stage learning process. In the first stage, we train an autoregressive network called the hand-pose-generator, which learns to generate a distribution of valid 6D poses of the palm for a given volumetric object representation. In the second stage, we employ a network that regresses 12D finger positions and scalar grasp qualities from given object representations and palm poses. To train our networks, we use synthetic training data generated by a novel grasp planning algorithm, which also proceeds stage-wise: first the palm pose, then the finger positions. Here, we devise a Bayesian Optimization scheme for the palm pose and a physics-based grasp pose metric to rate stable grasps. In experiments on the YCB benchmark data set, we show a grasp success rate of over 83%, as well as qualitative results on real scenarios of grasping unknown objects.
Item URL in elib: | https://elib.dlr.de/191780/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | A Two-Stage Learning Architecture That Generates High-Quality Grasps for a Multi-Fingered Hand | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9981133 | ||||||||||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Robotics, Grasping, Machine Learning, Deep Learning | ||||||||||||||||||||||||
Event Title: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022) | ||||||||||||||||||||||||
Event Location: | Kyoto, Japan | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 23 October 2022 | ||||||||||||||||||||||||
Event End Date: | 27 October 2022 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Telerobotics, R - Multi-fingered robotic hands [RO], R - Multisensory World Modelling (RM) [RO] | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||||||
Deposited By: | Winkelbauer, Dominik | ||||||||||||||||||||||||
Deposited On: | 06 Dec 2022 12:31 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:53 |
Repository Staff Only: item control page