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A Two-stage Learning Architecture that Generates
High-Quality Grasps for a Multi-Fingered Hand

Dominik Winkelbauer1,2, Berthold Bäuml1,3, Matthias Humt1, Nils Thuerey2, Rudolph Triebel1,2

Abstract— We investigate the problem of planning stable
grasps for object manipulations using an 18-DOF robotic
hand with four fingers. The main challenge here is the high-
dimensional search space, and we address this problem using a
novel two-stage learning process. In the first stage, we train an
autoregressive network called the hand-pose-generator, which
learns to generate a distribution of valid 6D poses of the
palm for a given volumetric object representation. In the
second stage, we employ a network that regresses 12D finger
joint configurations and a scalar grasp quality from given
object representations and palm poses. To train our networks,
we use synthetic training data generated by a novel grasp
planning algorithm, which also proceeds stage-wise: first the
palm pose, then the finger positions. Here, we devise a Bayesian
Optimization scheme for the palm pose and a physics-based
grasp pose metric to rate stable grasps. In experiments on the
YCB benchmark data set, we show a grasp success rate of over
83%, as well as qualitative results grasping unknown objects
on a real robot system.

I. INTRODUCTION

Data-driven grasping is becoming more and more popular
in recent years as it allows the grasping process to be fast and
work with incomplete observations of the object [1]. Many
of these grasping methods focus on parallel jaw grippers [2,
3, 4, 5]. While this leads to high success rates, it misses the
potential of multi-finger hands which are able to perform
more complex grasps.

Compared to parallel jaw grasping, generating grasps for
multi-finger hands is more complicated due to the higher
number of degrees of freedom (DOF). First, this makes it
harder to generate grasps that can be used as training data
for the neural network. While it is usually enough to perform
random sampling for parallel jaw grasps, this is not possible
for multi-finger grasps due to the large search space. Existing
approaches therefore either use heuristics, human labels, or
a dimensionality reduction of the search space to generate a
grasp dataset. We propose instead to use the more sample-
efficient Bayesian optimization, a convenient formulation of
the search space and an objective function based on the
ϵ-quality [6] which can be calculated rapidly together with a
full parametrization of the search space. In this way, we are
able to plan high-quality grasps in the full high-dimensional
grasp space.

Another challenge in multi-finger grasping is the formu-
lation of the grasping task such that it can be learned by
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Fig. 1. A high-quality grasp planned in simulation and executed on the
DLR-Hand II [7].

a deep neural network. In our approach, we split up the
learning task into generating multiple hand poses for a given
object and then estimating a specific joint configuration for
a given hand pose. In this way, we can still directly predict
grasps for a given object without time-consuming sampling
or optimization and at the same time make the generative task
easier. Summarized, we make the following contributions in
this work:

• We propose a novel grasp planner that is able to search
the full high-dimensional grasp space of a multi-finger
hand. It uses Bayesian Optimization to intelligently
select sample locations based on previous samples and
formulates the search space in an object-centric way.

• We improve the ϵ-quality in the following ways: We
describe the grasp using a dense collection of contact
points instead of using only a small number per link. We
compute the maximum applicable force at every contact
point based on their position relative to the joints and
the joint’s allowed torque intervals. Also, we describe
an efficient way to compute the epsilon quality based
on the Minkowski sum.

• We propose a novel formulation of the learning prob-
lem for generating more accurate grasps directly: we
propose to split up the grasp generation task, s.t. only
the hand pose is modeled via a generative network
and a discriminative network is used to estimate a
specific grasp configuration. Further, we propose to
use an autoregressive network architecture similar to
PixelCNN++ [8] for the generative network, as we show
that this leads to more accurate hand poses compared
to a conditional Wasserstein GAN (W-GAN) [9] or a
conditional Variational Autoencoder (VAE) [10].



II. RELATED WORK

A. Analytical grasp planning
One way of finding stable multi-finger grasps for a given

object is to define a grasp quality metric and then let an
optimizer search for a grasp configuration maximizing that
metric [11, 12]. As this requires exact knowledge of the
physical and geometrical details, more recent approaches,
including ours, use data-driven methods that can also work
with incomplete knowledge [1]. However, analytical grasp
planning is still used to generate training data for data-
driven methods. To do so, the ϵ-quality metric [6] is often
used. While the original definition assumes the same force at
each contact, we show how the contact forces can be scaled
realistically based on their location. To speed up the compu-
tation of the metric, the Partial Convex Hull algorithm only
computes the part of the convex hull that is necessary for de-
termining the weakest wrench [13]. We additionally manage
to efficiently incorporate the more realistic Minkowski sum
formulation of the metric into the algorithm. The ϵ-quality
metric can be further extended to also take the object shape
into account by only considering external wrenches that can
be created through forces on the object surface [14]. Borst
et al. [15] proposed to approximate that object wrench space
via an ellipsoid which makes the computation of the metric
more efficient. There has been much debate about how well
analytical grasp metrics represent the stability of a grasp in
reality, as they do not take any dynamics into account [16].
We show that with several extensions to the ϵ-quality metric,
its ability to identify stable grasps can be improved while still
being computationally efficient.

B. Data-driven grasp planning
Compared to analytical grasp planners, data-driven meth-

ods have the advantage that they can work with incomplete
object models and are faster at test time.

1) Generative and discriminative approaches: In discrim-
inative approaches, the network is trained to predict the
success probability of a given grasp. While this makes the
model easier to train, at test time a large number of grasps
needs to be sampled using a prior and the optimization of
the grasping parameters based on their predicted success
probability needs to be performed [17, 18, 19, 20]. Therefore,
it takes multiple seconds to generate one grasp.

Generative methods, like ours, do not have that problem, as
they predict the grasping parameters directly. Some methods
only predict one specific grasp for a given object [21, 22].
While this circumvents the need for a generative network
architecture, it can lead to inference situations where the pre-
dicted grasp is not feasible due to obstacles or the kinematics
of the robot. In our approach, we generate multiple grasps
and can therefore choose one that is feasible. Other methods
that go that way usually rely on a W-GAN or VAE architec-
ture [23, 24], while we propose an autoregressive architecture
which we show to generate more accurate grasps. Tobin et al.
[25] are also using an autoregressive architecture, however,
they are applying it to parallel jaw grasping and discretize
the output space.

2) Grasp formulation: Data-driven methods also differ
in the way the predicted grasp configuration is formulated.
Some methods like Shao et al. [26] let the network predict
contact points, usually one per finger. This has the disadvan-
tage that a costly inverse kinematic solver needs to be run at
test time to infer the position of hand base and fingers. To
reduce the dimensionality, Patzelt et al. [24], Lundell et al.
[23] only predict a grasp class or only the finger spread next
to the 6D hand pose. While this reduces the complexity of
the task, it requires labeling each training sample with the
respective class and reduces the space of grasps the network
can express. Our network architecture predicts instead the
whole grasp configuration including all degrees of freedom.
This is similar to Liu et al. [22], however, as noted above,
they only predict one grasp for a given object while we model
the whole distribution of grasps.

3) Training data generation: All supervised data-driven
methods need training data, consisting of stable grasps
planned on training objects. One way of creating such a
dataset is by manually labelling the grasps [27] or using hu-
man demonstrations [28, 29]. This makes the data generation
very time-consuming and it is not completely clear how to
map a grasp from a human to a robotic hand. In recent years,
using a simulator to label the stability of sampled grasps has
become more prominent [17, 18, 20, 30, 24]. While this takes
hand-object interactions into account and considers the grasp
controller used on the robot, running a realistic simulator is
very time consuming and therefore the number of grasps that
can be tested is low. Alternatively, one can use analytical
metrics to label grasps [21, 26, 22, 23], which is usually
done via GraspIt! [31]. While GraspIt only makes use of
the basic ϵ-quality, we improve the metric through multiple
extensions which we show brings it closer to the evaluation
performance with a rigid body simulator. Furthermore, we
propose a new grasp planner which is able to search through
the entire search space and is able to find a diverse set of
grasps spread across different approach directions.

4) Learning to grasp via Reinforcement Learning: A
completely different way of learning how to grasp is by using
reinforcement learning [32]. Here, the network is trained in
simulation to control the movement of the hand and joints
over multiple timesteps. While these approaches have the
advantage, that no explicit training dataset is necessary, the
conditions on the real robot need to be well calibrated to
match the ones of the simulator. Furthermore, the training of
the RL agent might get stuck in a local minimum, such that
the most stable grasps are never discovered.

III. GRASP LEARNING

To perform grasping efficiently at test time, a generative
model is trained on directly estimating a set of stable grasps
{x1, ..., xn} for the robotic hand DLR-Hand II [7], shown in
Fig. 3. Here, a grasp xi is defined as a tuple consisting of a
6D hand pose hi and a 12D joint configuration ji.

We propose a two-stage approach (see Fig. 2): First, a
generative network that suggests multiple promising hand
poses h for a given object and then a discriminative model
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Fig. 2. Overview of our two-stage network architecture which we use to learn the distribution of stable grasps conditioned on a given object. Dashed
lines represent connections that are only active during test time. Each of the two stages is trained separately.

that estimates a specific joint configuration j for each of these
hand poses. Each of the stages is trained separately and they
are only connected at test time. We found splitting the task
up into two stages is crucial, as predicting hand pose and
joint configurations jointly with a single generative network
is harder to learn.

A. Object encoder

Both networks receive the observed 3D object as an input,
which we represent as an signed distance field (SDF) of
size 483, i.e., a voxel grid with containing signed distance
values. For encoding the given voxel grid, both networks
make use of the same encoding architecture consisting of
four 3D convolutional layers, each followed by a pooling
layer. The resulting feature map is flattened into a vector
of size 512 and used further as the feature encoding of the
given object.

B. Generative network

The generative network G is trained on the mapping from
an observation o to a distribution over 6D hand poses h
leading to stable grasps:

G : o → p(h|o) (1)

For representing the rotational component of the hand
pose, we make use of quaternions. Therefore, each predicted
hand pose is defined by seven parameters. We propose
an autoregressive architecture inspired by PixelCNN++ [8]
which we found to predict more accurate hand poses com-
pared to other architectures. To do so, we decompose the
distribution into multiple single-dimensional distributions,
each conditioned on the previous ones.

p(h|o) =
7∏

i=1

p(hi|h1, ..., hi−1, o) (2)

Next to the object encoder, the generative network consists
of seven blocks of fully connected layers each model-
ing one of these conditional distributions. The blocks are
connected in an autoregressive way, meaning each block
receives the outputs of the previous blocks. As proposed by
PixelCNN++ [8], we approximate each conditional distribu-
tion with a mixture of logistic distributions whose parameters
are estimated via the respective network block. Each of the
L logistic distributions is described with the parameters πl,
µl and sl. Next to the encoding of the given object, each
block also receives the values of the conditioned dimensions.
During training, these values come directly from the ground
truth label, while during inference, the values are sampled
from the probability distributions described by the previous
network blocks The formulation of the loss term used to train
the network is derived from maximizing the log-likelihood
(see Salimans et al. [8]).

C. Joint estimator network

The joint estimator network J models the mapping from
observation o and hand pose h to a specific joint configura-
tion j, a hand pose refinement ∆h and score s:

J : {o, h} → {j,∆h, s} (3)

To fuse the two input modalities and to reduce the com-
plexity of the task, we bring the object observation into
the local coordinate system of the hand. To still be able to
consider the table as an obstacle, we add an SDF encoding
of the table into the second channel of the input. Two heads



are applied to the object feature encoding, one estimating
the 12D joint configuration plus a small 6D hand pose
correction and one estimating the score of the resulting grasp.
The 6D correction consists of three translational and three
euler angle dimensions which are added to the given hand
pose h. This allows the joint estimator to slightly adjust the
pose predictions of the first stage. Each of the two heads
consists of four fully connected layers using ReLU activation
functions.

The network is trained using one L2 loss per head. The
mapping learned by this stage is ambiguous, in the way that
different joint configurations can lead to equally stable grasps
for a given hand pose. Therefore, simply applying an L2 loss
using one specific ground truth sample can lead to learning
the, often undesired, mean of the underlying distribution of
valid joint configurations. To reduce this effect, we collect
for each training sample i a set of stable joint configurations
{ĵi,1, ..., ĵi,Ki} and then use the one closest to the network’s
prediction as the ground truth label in the loss:

Ljoint =
1

N

N∑

i=1

wi min
k

(ĵi,k − ji)
2 (4)

Similar to Sundermeyer et al. [2], the joint configuration
loss is weighted by wi which ensures that the training focuses
on good grasps. We apply here a binary weighting, where
we set wi only to 1 if its part of the top 50 grasps found on
the respective training object. The grasp quality estimation
loss is computed equally for all training samples, such that
the network is still forced to learn the difference between
stable and unstable grasps:

Lscore =
1

N

N∑

i=1

(ŝi − si)
2 (5)

As a target ŝi we use the score ŝi,k of the grasp that
the networks joint prediction ji was closest to. The whole
network is trained using the combination of both losses:

Ldiscr = Ljoint + αLscore (6)

To balance both losses we use α = 0.1.

IV. GRASP PLANNER

In this section, we describe our grasp planner which we
use to generate a dataset of grasps that are necessary to train
the grasping network from Section III.

To find stable grasps for a given object, we follow the
usual way of formulating the grasping task as an optimization
problem. As the search space for a multi-finger hand is quite
large, we decided on an efficient analytical grasp metric
in our objective function. In that way, we do not need to
restrict the search space, e.g. by using Eigengrasps [33],
but can consider all possible grasp configurations. As the
surface of the objective function is not smooth due to edges
in the object and hand geometry and the numerical com-
putation of gradients is computationally costly, we are not
using a gradient-based optimizer. Instead, we use Bayesian

Fig. 3. The DLR-Hand II [7] which we use for grasping annotated. Each
red dot represents a potential contact point.

optimization which is able to sample new points based on
previous ones and can handle non-smooth and multi-modal
objective functions. Unfortunately, Bayesian optimization
scales poorly with the number of samples and dimensions of
the search space. That is why we split up the optimization
problem into two nested ones: The Bayesian optimizer
optimizes the 6D hand pose and an evolutionary optimizer
is used to find the best joint configuration for a given hand
pose. Both parts are explained in more detail in the following
subsections.

A. Handpose optimization

The outer optimizer searches through the space of all hand
poses around the object.

1) Search Space: Just defining the search space as raw
6D poses in the area around the object, would lead to many
hand poses where the hand is actually pointing away from
the object. To prevent that, we define the search space as the
6D pose of the objects inside the palm of the fixed hand. If,
after sampling a 6D pose, the object collides with the open
hand, we move it along the up axis until the collision is
resolved. This makes it easier to sample power grasps where
the hand palm is in direct contact with the object.

2) Objective function: The value of the objective function
for a sampled hand pose is defined as the quality of the best
grasp using that hand pose. To find the joint configuration
of that grasp, the inner optimizer, described in Section IV-B
is used.

3) Optimizer: For optimizing the 6D hand pose, we make
use of Bayesian Optimization. For performance reasons we
do not use a Gaussian process as the surrogate function but
instead use tree-structured Parzen estimators [34].

B. Joint optimizer

The joint optimizer is run for each hand pose sampled by
the hand pose optimizer and its goal is to find a distribution
of stable joint configurations based on the given hand pose.



1) Search space: The search space is defined as the full
12D joint configuration space defined by the four fingers of
DLR Hand II. Specifically, each finger is described by one
actuator controlling the proximal joint, one controlling the
knuckle joint and one controlling the middle and distal joint
simultaneously.

2) Objective function: Starting from a sampled joint con-
figuration, we now map each finger to its closest object
surface. This simplifies the optimization problem a lot, as
now the optimizer does not need to carefully place the finger
on the surface by itself. If none of the fingers collides with
the object, the table or any other finger, the grasp is rated
using the ϵ-grasp metric described in the next subsections.

a) Basic ϵ-quality: To compute the quality of a given
grasp, at first, contact points between hand and object are
determined: to do so, we check for all 2500 potential contact
points (see Fig. 3) across the hand palm and fingers, if they
are closer than 5 mm to the object’s surface and if the angle
between object and flipped hand normal at the respective
point is smaller than 30◦.

After collecting for each finger F all contact points
p1, ..., pNF together with the object normals n1, ..., nNF at
each contact point, the forces that can be applied at each
point are determined. These forces are described by the
friction cone which is approximated via a pyramid having
K = 8 edges. Based on that, the space of wrenches, i.e.
forces and torques, that can be exerted on the object via
contact point pi is defined as the convex hull around the
wrenches that are caused by the forces fk

i along the edges
of that pyramid. Each of these wrenches wk

i are calculated
via:

wk
i =

(
ski f

k
i

pi × (ski f
k
i )

)
, with scaling factors ski . (7)

b) Realistic contact force scaling: In (7), we introduced
a scaling ski to every force vector instead of assuming the
same unary length force at each contact point. The scale is
determined based on the maximum force that can be applied
on that point pi on the link and into the direction of the force
vector fk

i based on the torque limits τmax of the finger.
To relate a scaled force ski f

k
i at a point pi with the torques

τki applied at the joints, the Jacobian Ji can be used.

τki = JT
i (ski f

k
i ) (8)

Based on that, we determine the highest scaling ski possi-
ble such that all torques stay within their limits.

So far only one contact point was taken into account. The
torques produced by forces applied at multiple contact points
on one finger can be written in a similar manner as:

τ =

NF∑

i=1

K∑

k=1

JT
i (ski f

k
i ) (9)

Now assuming that every contact force makes use of every
joint and creates torques with the same direction, the torque
budges τmax can be distributed via the weights βk

i as

τmax ≥
NF∑

i=1

K∑

k=1

βk
i J

T
i (ski f

k
i ), (10)

where
∑

i

∑
k β

k
i ≤ 1. The space of all wrenches GWSF

that one finger F can exert on the object while staying in
its torque limits can be expressed as the convex hull over all
wrenches originating from the fully scaled force vectors at
each contact point.

GWSF = CH(

NF⋃

i=1

K⋃

k=1

wk
i ) (11)

As each finger can apply wrenches to the object indepen-
dent from each other, the grasp wrench space of the full
grasp can be expressed via the Minkowski sum ⊕:

GWS = CH(⊕4
F=1GWSF ) (12)

Based on the space of all wrenches that the grasp can
exert on the object, the ϵ-quality metric now is defined as
the smallest distance from the origin to the boundary of that
space [6].

c) Object wrench space: We further make use of the
object wrench space (OWS) extension to the quality metric,
first proposed by Pollard [14]. This has the advantages that
the metric gets independent of the selection of the reference
point used for calculating the torques and is independent
of scaling the object. We use the efficient implementation
proposed by Borst et al. [15].

d) Computing the metric including Minkowski sum:
We make use of the partial convex hull algorithm (PQH) to
efficiently determine the smallest distance from the origin
to the convex hull [13]. Here, the convex hull is built using
the qhull algorithm, which, starting from an initial guess,
sequentially adds points to the convex hull until no points
are left outside. With the PQH that procedure stops early
when the facet closest to the origin has already been fully
extended.

As defined in (12), the computation of the points defining
the convex hull includes the Minkowski sum. Computing
that Minkowski sum explicitly for a usual grasp having 20
contact points per finger is intractable, as it would result in
(20× 8)4 = 6.55× 108 points in the wrench space.

We propose a novel extension to the PQH algorithm that
is able to implicitly consider the Minkowski sum with little
overhead: At each iteration of the PQH algorithm, at first the
facet closest to the origin is selected and then the point that
is furthest away from that facet is added to the convex hull.
We adjust the latter point selection in the following way:
Given a set of points {pF1 , ..., pFNF } per finger F , find the
combination of points kft ∈ [1, NF ]4 that is furthest away
from the facet:

kft = argmax
k

d

(
4∑

F=1

pFkF

)
, (13)



with d(p) being the distance of a point to the facet with
normal n and offset o: d(p) = n · p + o. By reformulating
(13), this computationally expensive combinatorial problem
can be drastically simplified:

kft =argmax
k

n ·
(

4∑

F=1

pFkF

)
+ o

=argmax
k

4∑

F=1

n · pFkF =

4∑

F=1

argmax
kF

n · pFkF

(14)

So instead of finding the combination of points that
is furthest away, we can simplify the problem to finding
one point per finger that is furthest away from the facet.
Therefore, it is enough to compute the distance of every point
to the facet once per iteration, just like in the original PQH
algorithm. The only additional overhead is that the algorithm
runs usually for more iterations, as implicitly more points are
available.

3) Optimizer: For finding stable joint configurations for a
given hand pose, we make use of an evolutionary optimizer.
Each run of the joint optimizer consists of 144 sampling
steps.

V. EXPERIMENTS

A. Experimental setup

We use the grasp planner, described in Section IV, to
generate a training dataset. As training objects we make use
of 2100 objects, up to 50 per category, from the ShapeNet
dataset [35]. From all found grasps, we use the top 50 grasps
and 50 other random grasps per object to form our training
dataset. For training the generative network we only use the
top 50 grasps. The generative network is trained for 3× 105

iterations using Adam optimizer with a learning rate of 10−4

and a batch size of 64. The joint estimator network is trained
for 105 iterations, using the same optimizer parameters. To
generate the voxel grids containing signed distance values,
we build on the algorithm proposed by Denninger and Triebel
[36], which can handle meshes that are not completely
watertight. We normalize all inputs and labels to have a mean
of 0 and a standard deviation of 1.

B. Grasp metric comparison

To show that our grasp metric can be used as an indicator
for the success of the grasp execution, we compare it with
the success rate of grasping and lifting the object in a physics
based simulator. Furthermore, we also compare how the
different extensions to the original ϵ-quality [6] influence
these results. To simulate a given grasp, we start with the
hand placed 30 cm moved back along the approach direction
and then approach the object with opened up fingers. During
the last two centimeters of the approach, the fingers are
closing toward the joint configuration specified by the given
grasp. A joint-level impedance controller is now used to
control the grasp. After the object is grasped, the hand lifts
the object upwards. If at any point during the simulation,
the object drops out of the hand, the grasp is marked
as not successful. In this way, we label a set of 22,000

grasps across 225 objects from our ShapeNet-based training
dataset. For each grasp metric, we now calculate the ratio of
successful grasps in the set of grasps with the top 1% and
top 10% grasp metric values.

TABLE I
COMPARISON OF ϵ-METRIC EXTENSIONS

Success ratio
Top 1% Top 10 %

Original ϵ-quality [6] 61.4% 66.1%

+ force scaling 84.4% 69.4%
+ object wrench space [15] 90.2% 79.3%
+ minkowski sum 90.6% 81.2%

Table I shows the results of this evaluation. It can be seen
that the original ϵ-quality only poorly correlates with the
success of a grasp in simulation. This coincides with the
findings of similar evaluations in other works [16]. However,
especially adding the more realistic force scaling and the
object wrench space lead to a major increase in the ratio
of successful grasps. Adding the Minkowski sum, which
allows each finger to exert forces independently, only causes
a minor improvement. This is plausible, as the cases where
this becomes relevant are usually rare.

C. Evaluation in simulation

Using the simulation-based evaluation strategy described
in the previous subsection, we now rate the stability of grasps
predicted by our trained neural network. Here we now use 16
objects from the YCB dataset [37], each is evaluated three
times with different random rotations around the up-axis. For
each object, we let the network sample 1024 grasps and then
perform the grasp that was annotated with the highest score
by the network. The ratio of grasps that could lift the object
successfully is shown in Table II.

Fig. 4 shows some of these grasps on six YCB objects
covering various shapes. It has to be noted, that the visualized
grasps represent the direct output of the neural network, so
no post-processing was applied. Based on that, it can be seen
that the network manages to place the fingers quite accurately
on the object’s surface. Furthermore, the network seems to
be able to adjust its grasps based on the object’s shape: for
smaller objects, like the baseball or the banana, the network
predicts a precision grasp, while for bigger objects like the
pitcher or the bleach bottle, it outputs power grasps where
the hand palm is in contact with the object.

D. Ablation study

Table II further shows how the components we proposed
for the network architecture influence the results.

First, we look at the influence of transforming the input
object of the joint estimator into the local coordinate system
of the hand pose. Therefore, we train a joint estimator which
gets the object in its original pose and the hand pose as an
additional input. As can be seen in the results, this makes the
learning problem a lot harder and results in less stable grasps.
Further, we train an autoregressive generative architecture on



Fig. 4. Grasps predicted by our neural network across multiple YCB objects. Each grasp is the one that received the highest predicted score on the
respective object.

predicting not only the hand pose but the full grasp. The
generative learning task becomes now more difficult to learn
which results in a doubling of the ratio of failures. Finally, we
confirm that using a random grasp sampled by the network
leads to worse results compared to using the one that was
scored highest by the network.

TABLE II
EVALUATION OF THE GRASPING NETWORK ON YCB

Success ratio

Our proposed network architecture 83.3%

No trafo of the object input 54.2%
One generative network on full grasps 66.7%
Random grasp selection (no scoring) 68.7%

E. Evaluation of the generative stage

To compare our proposed autoregressive architecture with
the often used W-GAN and VAE architectures, an isolated
evaluation is conducted. For each YCB object, we sam-
ple 16 hand poses using each of the evaluated generative
models. Afterwards, the evolutionary optimizer described in
Section IV-B is used to find the best joint configuration for
each sampled hand pose. The final grasps are rated based
on their execution in simulation and based on their grasp
quality. The results shown in Table III confirm that the
autoregressive architecture allows sampling more accurate
hand poses leading to better grasp qualities and higher
success rates.

This also becomes apparent when looking at the qualitative
example shown in Fig. 5. Here, hand poses sampled on
the YCB chips object can are visualized from a top down
perspective. While W-GAN and VAE produce hand poses
intersecting with the object or being several centimeters
away, the autoregressive architecture persistently produces
accurate poses. We suspect that this behavior comes from
the fact that the autoregressive network directly predicts the
specific distribution, while the other two networks need to
learn a mapping from every latent vector to a valid hand
pose.

To check the influence of the parameter order when using
the autoregressive architecture, we evaluate different permu-
tations with the same procedure. The results in Table III show
that besides small perturbations all evaluated permutations
lead to similar results.

TABLE III
ISOLATED EVALUATION OF THE GENERATIVE STAGE

Mean grasp quality Success ratio

Autoregressive 8.59 68.2%
VAE 5.64 56.3%
W-GAN 4.92 50.0%

Autoregressive with different parameter order:
qwqzqyqxtztytx 8.71 69.1%
qxqyqzqwtxtytz 8.34 68.1%
qxtxqytyqztzqw 8.52 68.7%

F. Sim-to-real transfer

To evaluate how well the predicted grasps generalize to
the real world, we executed some of the grasps on the
real robot. We consider two scenarios: First, we assume
the 3D model of the object is given and the object pose
is determined via the iterative closest point algorithm [38].
In that case, the input to the neural network is calculated in
the same way as in the simulation-based evaluation. In the
second scenario, we assume an unknown object which we
only observe via a fused 3D model from the robot’s depth
sensor [39]. Here, we perform first a shape completion step
to fill up the incomplete 3D model. We show both cases
in the video accompanying this paper, executed on DLR’s
humanoid robot Agile Justin [40], using a learning-enhanced
motion planner [41] for moving the hand to the pre-grasp

W-GAN

VAE

Autoregressive

Fig. 5. Hand poses sampled by different generative models for the YCB
chips object can. The object is seen from the top and its boundary is
visualized by a black circle. This example visualizes the precision of the
autoregressive generator compared to a W-GAN and a VAE.



pose without collisions.

VI. CONCLUSIONS

We presented a novel approach for efficiently finding high
quality grasps for a multi-finger hand on a given object
using Bayesian optimization coupled with evolutionary op-
timization. Our objective function is based on the analytical
ϵ-metric which makes it efficient to compute and lets us
formulate the search space with full DOF. To make the
grasp metric more realistic, we propose a procedure to
scale the contact forces based on their location instead of
assuming the same force at every contact point. Furthermore,
we propose an efficient way for computing the Minkowski
sum-based ϵ-metric. Using the training data generated by
the grasp planner, we train a neural network on the task
of generating grasps for a given object. We propose a
two-stage approach, in which first suitable hand poses are
generated and then specific stable joint configurations per
hand pose are regressed. This makes the generative task
easier, while still being accurate. Our generative network
consists of an autoregressive architecture predicting logistic
distributions which we found to outperform the VAE and
W-GAN architecture.
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