Otgonbaatar, Soronzonbold and Datcu, Mihai and Zhu, Xiao Xiang and Kranzlmüller, Dieter (2022) Quantum Machine Learning for Real-World, Large Scale Datasets with Applications in Earth Observation. AI4EO Symposium, 2022-10-13 - 2022-10-14, Ottobrunn, Munich, Germany.
PDF
210kB | |
PDF
1MB |
Official URL: https://ai4eo.de/symposium
Abstract
Quantum machine learning is the synergy between quantum computing resources and machine learning methods. In particular, quantum machine learning refers to quantum algorithms promising to compute some machine learning methods and optimization problems (polynomially) faster than conventional algorithms. Quantum algorithms for computing any problems are algorithms using a quantum computer. This work (I) identifies intractable real-world problems of practical significance which can be computed efficiently on a quantum computer, (II) provides an encoding strategy of real-world, large scale problems in a small-scale quantum computer, and (III) invents so-called hybrid classical-quantum (HPC+nQC) learning networks and analyses their performance in comparison to conventional machine (deep) learning methods in order to gain quantum advantage as early and efficiently as possible; here, HPC+nQC is referred to as high performance computing and n quantum computers, where n stands for n different types of quantum computers.
Item URL in elib: | https://elib.dlr.de/188906/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Quantum Machine Learning for Real-World, Large Scale Datasets with Applications in Earth Observation | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | October 2022 | ||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Page Range: | pp. 1-2 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | quantum computing, quantum machine learning, big data, earth observation, remote sensing | ||||||||||||||||||||
Event Title: | AI4EO Symposium | ||||||||||||||||||||
Event Location: | Ottobrunn, Munich, Germany | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 13 October 2022 | ||||||||||||||||||||
Event End Date: | 14 October 2022 | ||||||||||||||||||||
Organizer: | Technical University of Munich | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
Deposited On: | 18 Oct 2022 13:32 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:50 |
Repository Staff Only: item control page