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1. ABSTRACT

Quantum machine learning is the synergy between quan-
tum computing resources and machine learning methods.
In particular, quantum machine learning refers to quantum
algorithms promising to compute some machine learning
methods and optimization problems (exponentially) faster
than conventional algorithms. Quantum algorithms for
computing any problems are algorithms using a quantum
computer. This work (I) identifies intractable real-world
problems of practical significance which can be computed
efficiently on a quantum computer, (II) provides an encod-
ing strategy of real-world, large scale problems in a small-
scale quantum computer, and (III) invents so-called hy-
brid classical-quantum (HPC-nQC) learning networks and
analyses their performance in comparison to conventional
machine (deep) learning methods in order to gain quantum
advantage as early and efficiently as possible; here, HPC-
nQC is referred to as high performance computing and n
quantum computers, where “n” stands for n different types
of quantum computers.

2. INTRODUCTION

Current real-world problems involve big datasets obtained
from dedicated experiments, internet, and distinct sensor
devices. Modern supercomputers (HPC) allow us to anal-
yse and to recognize hidden patterns in these big datasets
by leveraging Machine Learning (ML) and Deep Learn-
ing (DL) techniques faster than ever before while their
computing power including floating-point and matrix op-
erations increases [11], [4]. In particular, an increase of
computing power of a supercomputer made it possible to
employ ML and DL techniques on real-world big datasets.
However, there is the indication that even the most pow-
erful supercomputer in the world cannot solve efficiently
a certain class of problems in science, engineering, and
industry. These problems are called NP-hard problems
in computational complexity when efficient classical algo-
rithms are not known for finding their solutions [12], [2].

NP-hard problems motivated generations of scientists to
study and employ a quantum algorithm while quantum
algorithms using a quantum computer are exponentially
faster than conventional algorithms for some intractable
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Figure 1: Input big data: Real-world large scale datasets,
How to: Embedding strategy, and Small quantum com-
puter: NISQ computers.

problems [6], [20]. For example, Grover’s search [7] and
Shor’s factorization [20] show polynomial speedup over
their classical counterparts. There are even a quite few
quantum algorithms exhibiting quantum advantage over
classical algorithms, and hence, for interested readers on
speedup improvements of quantum algorithms, we would
like to refer to the website cited in [17].

Several kinds of quantum computers for executing quan-
tum algorithms, that is, a quantum annealer and uni-
versal, general-purpose quantum computers, recently be-
come accessible via online [5], [9]. These quantum com-
puters has a limited error-prone quantum bits (around
50-100 qubits), and such quantum computers are called
Noisy Intermediate-Scale Quantum (NISQ) computers
[16]. Thus, finding potential applications for NISQ com-
puters becomes an on-going research study. And quantum
ML is one of the most promising applications for NISQ
computers due to its probabilistic methodology. Quan-
tum ML (QML) studies quantum variational algorithms
for speeding up some ML and DL techniques. Several
QML algorithms surpass their classical counterparts, and
these quantum algorithms include quantum principal com-
ponent analysis (qPCA), quantum support vector machine
(qSVM), a Harrow-Hassidim-Lloyd (HHL) algorithm for
a least squares fitting, and a quantum neural network
(qNN) [10], [18], [8], [3], [1]. Even some advantages
of QML and quantum sampling algorithms are experi-
mentally demonstrated in laboratories [22], [19]. There
are, however, no demonstrated quantum advantages using
universal, general-purpose quantum computers for solving
real-world problems due to their very few noisy qubits and
quantum gates. Even there is the bottleneck of encoding
classical, large scale datasets in imperfect small quantum
computers.

3. CONCLUSION

In this talk, we (I) identify intractable real-world problems
which can be computed on a quantum computer [14], (II)



Figure 2: A hybrid classic-quantum model: HPC+nQC

develop novel methodologies to encode real-world, large
scale datasets in limited error-prone qubits [13], and (III)
invent hybrid classical-quantum (HPC-nQC) networks and
benchmark their performance on real-world big datasets in
comparison to classical machine and deep learning meth-
ods [15]. In particular, we develop novel methods to map
large scale images (in our case, remotely-sensed satellite
images) to small quantum computers (see Figure 1), and
we propose novel hybrid classical-quantum models (HPC-
nQC) for processing real-world big datasets and prob-
lems (see Figure 2), since we do not know that when we
have a programmable universal quantum computer a so-
called fault-tolerant quantum computer (FTQC) with per-
fect n ≥ 100 qubits and quantum gates [21]. The proposed
hybrid classical-quantum models in this talk, indeed, help
us to tackle two main challenges encountered in NISQ-
era computers: 1) encoding real-world, large scale datasets
in small quantum computers, and 2) benchmarking QML
methods against each other and conventional ML methods.
More importantly, the studies presented here broaden our
perspectives on using small-scale quantum computers and
will help us to design QML models with quantum advan-
tages as early and efficiently as possible for practically sig-
nificant problems.
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