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CHSH game

Referee: Charlie
on the Earth

ain{0,1}

Player 1: Alice on Player 2: Bob on
the Mars the Moon

Players win If
x -y =a(xor)b; x,y,a,b € {0,1}
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Player 1: Alice on
the Mars

CHSH game: classical world

Referee: Charlie
on the Earth

Player 2: Bob on
the Moon

Players winning probability in
classical world: 75 percent
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CHSH game: quantum world

Referee: Charlie
on the Earth

Player 1: Alice on
the Mars

Player 2: Bob on
the Moon

They share a so-called entangled
guantum bits (particles).
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CHSH game: quantum world

Referee: Charlie
on the Earth

X y
a b
Entangled: non-local
Player 1: Alice on interaction (no classical Player 2: Bob
the Mars
channel)

Players winning probability in
guantum world: 85 percent
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Quantum Machine Learning

States entangled in a guantum computer yield
higher correlation values (saw in CHSH game)
than states in a classical computer.

Involves the concepts of
probability and correlation. Thus, this validates
to study Machine Learning and deploy it on a
guantum computer:
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Classical & Quantum computer

|0001110000001111111> =
c1/110000110001111100>+
0001110000001111111 c2/010100100101100100>+

cn|010100110001110111>

CC: bits QC: guantum bits (or qubits)
which can exist in superposition and
are entangled.
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Classical & Quantum computer

Transistor error: Qubit error:

p~10727 p~10~3

CC: bits QC: quantum bits (or qubits)

P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger and L. Alvisi, "Modeling the effect of technology trends on the
soft error rate of combinational logic," Proceedings International Conference on Dependable Systems and

Networks, 2002, pp. 389-398, doi: 10.1109/DSN.2002.1028924.
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Classical & Quantum computer

Quibit error: 27 -
An error-corrected quantum computer, say p~107</, is

p~10—3 called a fault-tolerant quantum computer, and a
noisy-intermediate scale quantum computer
(NISQ), say p~10~13, otherwise.

QC: quantum bits (or qubits)

John Preskill, Fault-tolerant quantum computer, arXiv: quant-ph/9712048

John Preskill, Quantum Computing in the NISQ era and beyond, arXiv: 1801.00862
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Computational Complexity

Fault-Tolerant Quantum

Classical Computer Computer

NP-complete

Bounded-Error
Quantum
Polynomial Time

Post-quantum
N P crypto?

Factoring

scott Aaronson , How Much Structure Is Needed for Huge

Quantum Speedups7 arXiv:2209.06930
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Quantum Algorithm Evolution

Polynomial-Time Algorithms for Prime Factorization

and Discrete Logarithms on a Quantum Computer®

Peter W. Short

NP-complete

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with

an increase in computation time by at most a polynomial factor. "This may not be
true when quantum mechanics is taken into ideration. ‘This paper considers -
factoring integers and finding discrete logarithms, two problems which are generally

thought to be hard on a classical computer and which have been used as the basis
of several proposed cr Efficient ized algorithms are given for

these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the

integer to be factored.

o .
Keywords: algorithmic number theory, prime factorization, discrete logarithms,
Chureh’s thesis, quantum computers, foundations of quantum mechanics, spin systems,

Fourier transforms

Post-quantum
N P crypto?

Factoring

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10

quant-ph/9508027v2 25 Jan 1996

arXiv

*A preliminary version of this paper appeared in the Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, NM, Nov. 20 22, 1004, [EEE Computer Society Press,

pp. 124-134.
TAT&T Research, Room 2D-149, 600 Mountain Ave., Murray 1ill, NJ 07974.

Quantum Factoring
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PRL 103, 150502 (2009) PHYSICAL REVIEW LETTERS 9 OCTORER S

Quantum Algorithm for Linear Systems of Equations

Aram W. Harrow,' Avinatan Hassidim,” and Seth Lloyd*
' Department of Mathematics, University of Bristol, Bristol, BS8 ITW, United Kingdom
Research Laboratory for ics, MIT, Cambridge, 02139, USA
3Research Laboratory for ics and Dep of ical Engineering, MIT, Cambridge, Massachusetts 02139, USA
(Reccived 5 July 2009; published 7 October 2009)

Solving lincar systems of equations is a common MOblC[P ‘that arises both on its own and asa subroutine
in more complex problems: given a matrix A and a vector b, find a vector ¥ such that A¥ = b. We consider
the case where one docs not nced to know the solution X itself, but rather an approximation of the
expectation value of some operator associaled with , ¢.g., ¥ M for some matrix M. In this case, when A
is sparse, N X N and has condition number «, the fastest known classical algorithms can find ¥ and
estimate &' M in time scaling roughly as N./. Here, we exhibit a quantum algorithm for estimating
3 M whose runtime is a polynomial of log(N) and . Indeed, for small values of « [i.e., poly log(N)], we
prove (using some common complexity-theoretic assumptions) that any classical algorithm for this

Polynomial-Time Algorithms for Prime Factorization

-ph/9508027v2 25 Jan 1996

and Discrete Logarithms on a Quantum Computer®

Peter W. Short

Abstract

A digital computer is generally believed to be an efficient, universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought, to be hard on a classical computer and which have been used as the basis
of several proposed cry Efficient ized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms,
Churchs thesis, quantum ons of quantum ics, spin systems,
Fourier transforms

problem generically requires cxponentially more time than our quantum algorithm.

DOI: 10.1103/PhysReviett. 103.150502

Introduction.—Quantum computers are devices that har-
ness quantum mechanics to perform computations in ways
that classical computers cannot. For certain problems,
quantum  algorithms supply cxponential speedups over
their classical counterparts, the most famous example
being Shor’s factoring algorithm [1]. Few such exponential
speedups are known, and those that are (such as the use of
quantum computers to simulate other quantum systems
[2]) have so far found limited use outside the domain of
quantum mechanics. This Letter presents a quantum algo-
rithm to estimate features of the solution of a set of linear
cquations. Compared to classical algorithms for the same
task, our algorithm can be as much as exponentially faster.

Linear equations play an important role in virtually all

PACS numbers: 03.67.A¢, 02.10.Ud, 89.70.Eg

However, the condition number often scales with the size
of the problem, which presents a more serious limitation of
our algorithm. Coping with large condition numbers has
been studied extensively in the context of classical algo-
rithms. In the discussion section, we will describe the
applicability of some of the classical tools (pseudoinverses,
preconditioners) to our quantum algorithm.

‘We sketch here the basic idea of our algorithm and then
discuss it in more detail in the next section. Given a
Hermitian N X N matrix A, and a unit vector b, suppose
we would like to find ¥ satisfying AX — b. (We discuss
later questions of efficiency as well as how the assumptions
we have made about A and b can be relaxed.) First, the
algorithm represents b as a quantum state |b) = N bili).

T :

E fields of science and engineering. The sizes of the data sets Next, we use techni " BAlt0

< AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10 hat define the equations are growing rapidly over time, so apply e’ to |b) for a superposition of different times .
= ) g d ol d that terabytes and even petabytes of data may need to be L B .

: < ° This ability to exponentiate A translates, via the well-
o processed to obtain a solution. In other cases, such as when " P . L
= Mot e e known technique of phase estimation [5,6], into the ability

2 l_lscre ]Z'"Ee[ ]? lll ilre:i‘ ‘:d aq:; “"msf’ ]e mef:l: Bq‘:;:' to decompose |b) in the cigenbasis of A and to find the
>< ons may be implicitly defined and thus far larger than the corresponding eigenvalues A;. Informally, the state of the
= original description of the problem. For a classical com- system after this stage is close to IV | 8,1u;}A,), where u
© puter, even to approximate the solution of Nlinear equa- S stage is clos Ot e e J

*A preliminary version of this paper appeared in the Proceedings of the 35th Annual Symposium

tions in N unknowns in general requires time that scales at
least as N. Indeed, merely to write out the solution takes
time of order N. Frequently, however, one is interested not
in the full solution to the equati but rather in putil

is the cigenvector basis of A, and |b) = T¥ | B;lu;). We
would then like to perform the linear map taking |A,) to

C/\J"IA,—), where C is a normalizing constant. As this

some function of that solution, such as determining the
total weight of some subset of the indices.

We show that in some cases, a quantum computer can
approximate the value of such a function in time which

is not unitary, it has some probability of failing,
which will enter into our discussion of the runtime below.
After it succeeds, we uncompute the | A, register and are
left with a state proportional to ¥, BA; 'u)) =
AB) = |x).

on Foundations of Computer Science, Santa Fe, NM, Nov. 20 22, 1004, IEEE Computer Society Press, scales y in N, and polyno in the con-~ An | nt factor in the perfo of the matrix
pp- 124-134. dition number (defined below) and desired precision. The  inversion algerithm is «, the condition number of A, or the
FATET Research, Room 2D-149, 600 Mountain Ave., Murray 11ill, NJ 07974, d d on N is ially better than what is ratio between A’s largest and smallest cigenvalues. As the

achievable classically, while the d d on d

number is comparable, and the dependence on error is
worse. Typically, the accuracy required is not very large.

number grows, A becomes closer to a matrix
which cannot be inverted, and the solutions become less
stable. Our algorithms will generally assume that the sin-

0031-9007/09/103(15)/150502(4) 150502-1 © 2009 The American Physical Socicty

Fast quantum (HHL) algorithm for a system of equations
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Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer®

Peter W. Shor!

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it s believed able to simulate any physical computing device with
an increase in time by at most a pol; factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. T'hese algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms,
Church’s thesis, quantum of quantum ics, spin systems,
Fourier transforms

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10

*A preliminary version of this paper appeared in the Proccedings of the 35th Annual Symposium
on Foundations of Computer Science, Santa. Fe, NM, Nov. 20 22, 1994, IEEE Computer Socicty Press,

p. 124-134.
TAT&T Research, Room 2D-149, 600 Mountain Ave., Murray 1ill, NJ 07074,
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Aand a vector.

onsider
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e case wher one docs nt need 1o know e souion s, bt et a sproximaton of the

expectation value of some operator associated with 7, ., &1 M for some matrix M. In this casc, when A
is sparse, N X N and has condition number x, the fastet Known classcal algorithms can find % and
csimale 1M1 n e scaling rovghly as . e w cxhii  guanum algoritm for cimaig

prove (using some common cnm,ﬂmy theoretic ass:

small values of  [i.c.,poly log(N)], we
umpions) that any classical algoritn for this

problem generically ‘more time than our

DOL 10.1103/PhysRevLet 103150502

Introduction.—Quantum computers are devices that har-
ness quantum mechanics o perform computations in ways
that classical computers cannot. For certain problems,
quantum algorithms supply exponential speedups over
their classical counterparts, the most famous example

PACS numbers: 03.67Ac, 02.10Ud, 89708y

However, the condition number often scales wi
ofthe problem, which presents a more serious limitation of
our algorithm. Coping with large condition numbers has
been studied extensively in the context of classical algo-
sithms. In the discussion section, we will describe the

being Shor's factoring algorithm [1].
speedups arc known, and those that are (such as the use of
quantum computers to simulate other quantum systems
[21) have 5o far found limited use outside the domain of
‘quantum mechanics. This Letter presents a quantum algo-

task.ouralgoitm cn b as mch as oxponenilly faser.

Linear equations play an important role in virtually all
fields of science and engineering. The sizes of the data sets
that define the equations are growing rapidly over time, so
that terabytes and even petabytes of data may need to be
processed to obtain a solution. Tn other cascs, such s when
discretizing partial differential cquations, the linear equa-
tions may be implicitly defined and thus far larger than the
original description of the problem. For a c
puter, even o approximate the solution of Minear equa
tions in N unknowns in general requires time that scales at
Teast as N. Indeed, merely o write out the solution tzkes
time of order N. Frequently, however, one is inerested not
in the full olution to the equations, but rather in computing
some function of that solution, such as determining the
total weight of some subset of the indices.

‘We show that in some cases, a quantum computer can
approximate the value of such a function in time which
scales logaitmicalyin N, and polynomially in the con-
dition mmber (dfned bekow) g desied e, The
depender s exponentally hoter than what 1+
achiovable c|x.:sxcl\|y while the dependence on condition

number is comparable, and the dependence on error is
‘worse. Typically. the accuracy required is not very large.

0031-9007/09/103(15)/150502(4) 150502-1

preconditioners) to our quantum algorithm.

‘We sketch here the basic idea of our algorithm and then
discuss it in more detail in the next section. Given a
Hermitian N X N matrix A, and a unit vector 5. suppose
we would like to find ¥ satisfying A% = b. (We discuss

we have made about A and b can be relaxed.) First, the
algorithm represeats 5 as a quantum state 16) = XY, byl
Next, we use techniques of Hamiltonian simulation [3 4] o
apply ¢’ to [b) for a superposition of different fimes 1.
This ability to exponentiate A translates, via the well-
Known technique of phase estimation [5,6], into the ability
o decompose |5) in the cigenbasis of A and to find the
cormesponding eigenvalues A,. Informally, the state of the
ystemafe this sagesclasc o S1.,

taking |A)) to
J1IA), where C is a ommalizing consnt. As this

don is not unitary, it has some probability of faling,
ki will e it e oo th i ks
s, we uncompute the | A,) register and are
|=n it 3 s proportional 1o Y, B,A; " luj) =

A7'1b) = ).

An important factor in the performance of the matrix
inversion algorithm is &, the condition number of A, or the.
rtlo between A’ largetandsmalest cigemalue. As the

number grows, A becomes closer to a matrix
Which cannol b imered and the soutons become Iess
stable. Our algorithms wil generally assume that the sin-

© 2009 The American Physical Society

1411.4028v1 [quant-ph] 14 Nov 2014

arXiv

MIT-CTP/4610

A Quantum Approximate Optimization Algorithm

Edward Farhi and Jeffrey Goldstone

Center for Theoretical Physics

Massachusetts Institute of Technology

Cambridge, MA 02139

Sam Gutmann

Abstract

We introduce a quantum algorithm that produces approximate solutions for combinatorial op-

timization problems. The algorithm depends on an integer p > 1 and the quality of the approx-

imation improves as p is increased. The quantum circuit that implements the algorithm consists

of unitary gates whose locality is at most the locality of the objective function whose optimum is

sought. The depth of the circuit grows linearly with p times (at worst) the number of constraints.

If p is fixed, that is, independent of the input size, the algorithm makes use of efficient classical pre-

processing. If p grows with the input

ze a different strategy is proposed. We study the algorithm

as applied to MaxCut on regular graphs and analyze its performance on 2-regular and 3-regular

graphs for fixed p. For p =1, on 3-regular graphs the quantum algorithm always finds a cut that

is at least 0.6924 times the size of the optimal cut.
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Abstract

ed to be an cf

e s eperly bl

that is, it is befieved able to simu

omputation time by at most a polynomial fact
nt i taken into consi

fnctoring integers an indin disrete logaithame, twoprobloms which are encrally
thought to be hard on a classical computer and which have been used as the basis
of several proposed eryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
& number of steps polynomial in the input size, e.g., the number of digits of the
integer to bo factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms,
Church’s thesis, quantum computers, foundations of quantum mechanics, spin systems,
Fourier transforms

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10
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Quantum Factoring

Aand a vector b, find a

A% — b. We consider

the case where one docs not need 1o know the :uluuun 3 itsel, but raher an approximation of the
with

M. Tn this case, when A

2 prs NN and ha condtion mumber x h ot Known clssica st <an o 5

polynomial of log(N) and x. Indecd, for small vahues of & li.c., poly log(N)], we

prove (using some common complexity-theoretic. assumptions) that any classical algorithm for this
problem genericaly requires exponentially more time than our quantum algorithm.

DOI: 10.1103PhysRevLett 103150502

ness quantum mechanics (o perform computations in ways
that classical computers cannot. For certain problems,
quantum algorithms supply exponential speedups over
their classical counterparts, the most famous example

PACS mumbers: 0367 Ac, 0210Ud, 89705g

However, the condition number often scales with the size

of the problem, which presents a more serious limitation of

our algorithm. Coping with large condition numbers has

been studied extensively in the context of classical algo-

rithms. Tn the discussion section, we will describe the
the.

being Shor's ul
specdups are known, and those that are (such as the use of
quantum computers to simulate other quantum systems
1) have so far found imitd ws ovtside the domin of
quantum mechanics. This Letter presents a quantum algo-
rithm to estimate features of the solution of a set of linear
equations. Compared to classical algorithms for the same.
task, our algorithm can be as much as exponentially faster.
Linear equations play an important role in virtually all
fields of science and engineering, The sizes of the data sets
tht e the equtons e groving rpily aves te, S0
um bt trbytes andcven ptbyts of dta ma 0 be
oot olon. Inther csen. s when
iseretsing partl differenil equations, h lnear o
tions may be implicitly defined and thus far larger than the
original description of the problem. For a classical com-
puter, even to approximate the solution of Nlinear equa-
tions in N unknowns in general requircs time that scales at
Teast as N. Indeed, merely to write out the solution takes
time of order N. Frequently, however, one is interested not

the full but

some funclon of that soluion, such a5 dtcrmining the
total weight of some subset of the

Wo show tha 1 soms case, & Qoantm computer can
approximate the value of such a function in time which
scales logarithmically in N, and polynomially in the con-
dition number (defined below) and desired precision. The
dependence on N is exponentially better than what is
achievable classically, while the dependence on condition
number is comparable, and the dependence on error is
worse. Typically, the accuracy required is not very large.

0031-9007/09/103(15)/150502(4) 150502-1

preconditioners) to our quantum algorithm.

‘We sketch here the basic idea of our algorithm and then
discuss it in more detail in the next section. Given a
vector B, suppose
we would like 1o find ¥ satisfying A% = b. (We discuss

Hermitian N X N matrix A, and a u

we have made about A and 5 can be relaxed.) First, the
algorithm represents § as a quantum statc [5) = S, )
ian simulation (3,4] 0

of different times 1.
“This abilty to exponcntiate A translates, via the well-
Known technique of phase estimation [5.6], ito the abilty
to decompose [5) in the cigenbasis of A and to find the
corresponding eigenvalues A;. Informally,the state of the
system aftr thisstage s close 10 5, 1 )IA,), where i,
is the cigenvector basis of A, and [6) — 3, fjlu;). We
would then like to perform the lincar map taking |A,) to
CAj'1A;), where C is a normalizing constant. As this
operation is not unitary, it has some probability of failing,
which will enter into our discussion of the runime below.
After it succeeds, we uncompute the |A,) register and are
left with 3 staie proportional to. 377, A7 'lu) =

'1b) = ).

An important factor in the performance of the matrix
inversion algorithm i x, the condition number of A, or the
ratio between A’s largest and smallest eigenvalues. As the
condition number grows, A becomes closer o a matrix

lutions become less
stable. Our algorithms will generally assume that the sin-

© 2009 The American Physical Society

Fast HHL algorithm
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Sam Gutmann

Abstract

We introduce a quantum algorithm that, produces approximate solutions for combinatorial op-

zation problems algorithm depends on an integer p > 1 and th

quality of the approx-

imation improv cased. The quantum circuit that implements the algorithm consists

s p is incy

of unitary gates whose locality is at most the locality of the objective function whose optimum is
sought. The depth of the circuit grows linearly with p times (at worst) the number of constraints.
1f p is fixed, that s, independent of the input size, the algorithm makes use of efficient classical pre-

processing. If p grows with the input size a different strategy is proposed. We study the algorithm

as applied to MaxCut on rogular graphs and its performance on 2-regular and 3-regular
graphs for fixed p. For p =1, on 3regular graphs the quantum algorithm always finds a cut that

is at least 0.6924 times the size of the optimal cut.

Quantum Variational Algorithm

The power of quantum neural networks

Amira Abbas'?, David Sutter', Christa Zoufal'3, Aurelien Lucchi®, Alessio Figalli* and Stefan Woerner©1

Itis unknown whether near-term are

for hine learning tasks. In this work we address this

question by trying to understand how pwerlul and trainable quantum machine learning models are in relation to popular clas-

sical neural We prop the effective i a

that these -and prove that it can be

used to assess any statistical model's ability to generalize on new data. Crucially, the effective dimension is a data-dependent
measure that depends on the Fisher information, which allows us to gauge the ability of a model to train. We demonstrate

numerically that a class of quantum neural networks is able to achieve a

iderably better ive dil ion than compa-

rable feedforward networks and train faster, suggesting an
quantum hardware.

he power of a model lies in its ability to fit a variety of func.
tions'. In machine learning, power is often referred to as a
model’s capacity to express different relationships between
variables’. Deep neural networks have proven Lo be extremely pow-
erful models, capable of capturing intricate relationships by learn
ing from data’. Quantum neural networks serve as a newer class of
machine learning models that are deployed on quantum computers
and use quantum effects such as superposition, entanglement and
interference to perform computation. Some proposals for quantum
neural networks include’"'—and hint at—potential advantages such
as speed-ups in training and faster processing. Although there has
been much development in the growing field of quantum machine
learning, a systematic study of the trade-offs between quantum and
classical models has yel to be conducted™. In particular, the ques-
tion of whether quantum neural networks are more powerful than
classical neural networks is still open.
common way to quantify the power of a model is by its com
plexity”. In statistical learning theory, the Vapnik-Chervonenkis
dimension is an established complexity measure, where error
bounds on how wella model lizes (that is, performs on unseen
data) can be derived"'. Although the Vapnik-Chervonenkis dimen
sion has attractive properties in theory, computing it in practice is
nntnrmmly difficult. Furthermore, using the Vapnik-Chervonenkis
to bound li error requires several unreal-
istic assumptions, including that the model has access to infinite
data’"*. The measure also scales with the number of |

age for ing, which we verify on real

We turn our attention to measures that are easy to estimate in
practice and, importantly, incorporale the distribution of data. In
particular, measures such as the effective dimension have been
motivated from an information-theoretic standpoint and depend
on the Fisher information, a quantity that describes the geometry
of a model’s parameter space and is essential in both statistics and
machine learning™ . We argue that the effective dimension is a
robust capacity measure through proof of a generalization error
bound and supporting numerical analyses, and thus use this mea
sure Lo study the power ofa popular class of neural networks in both
classical and quantum regimes.

Despite a lack of quantitative statements on the power of quan-
tum neural networks, another issue is rooted in the trainability
of these models. A precise connection between expressibility and
trainability for certain classes of quantum neural networks is out:
lined in refs. . Quantum neural networks often suffer from the
barren plateau phenomenon, wherein the loss landscape is peril
ously flat and parameler optimization is therefore extremely diffi-
cult”. As shown in ref. *, barren plateaus may be noise induced,
where certain noise models are assumed on the hardware. In other
words, the effect of hardware noise can make it very difficult to
train a quantum model. Furthermore, barren plateaus can be circuit
induced, which relates to the design of 2 model and random param
eler initialization. Methods to avoid the latter have been explored
in refs. %, but noise-induced barren p]atcaus remain problematic.

in the model and ignores the distribution of d.dlﬂ A< mndcrn deep
neural ks are heavily overp: ion
bounds based on the Vapnik-Chervonenkis dimension—and other
measures alike—are typically vacuous''*.
In ref. ', the authors analyzed the expressive power of param
elerized quantum circuits using memory capacity and found that
neural ks had limited ad over classical
neural networks. Memory capacity is, however, closely related to
the Vapnik-Chervonenkis dimension and is thus subject to sim.
ilar criticisms. In ref. , a quantum neural network is presented
that exhibits a higher expressibility than certain classical models,
caplured by the types of probablllty distributions it can gener-
ate. Another result from ref. *' is based on strong heuristics and
provides systematic examples of possible advantages for quantum
neural networks.

lar attempt to und d the loss landscape of quan-
tum models uses the Hessian®, which quantifies the curvature of a
model’s loss function at a point in ils parameter space™. Properties
of the Hessian, such as its spectrum, provide useful diagnostic
information on the trainability of a model™. It was discovered that
the entries of the Hessian vanish exponentially in models suffering
from a barren plateau™. For certain loss functions, the Fisher infor-
mation matrix coincides with the Hessian of the loss function”.
Consequently, we can examine the trainability of quantum and clas-
sical neural networks by analyzing the Fisher information matrix,
which is incorporated by the effective dimension. In this way, we

may explicitly relate the effective dimension to model trainability™.
We find that a class of quantum neural networks is able to achieve

a considerably higher capacity and faster training ability numeri
cally than comparable classical feedforward neural networks. A
higher capacity is captured by a higher effective dimension, whereas

"IBM Quantum, |BM Research—Zurich, Rueschlikon, Switzerland. *University of KwaZulu-Natal, Durban, South Africa. *ETH Zurich, Zurich, Switzerland.

-mall: wor@zurich.ibm com

Power of quantum variational algorithms
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Fault-tolerant quantum computers
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Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer®

Peter W. Short

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrote logarithms,
Church’s thesis, quantum of quantum spin systems,
Fourier transforms

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10

*A preliminary version of this paper appeared in the Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, Santa. Fe, NM, Nov. 2022, 1994, IEEE Computer Society Press,
pp. 124-134.
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Solving

arises both

in more complex problems: given a matrix A and a vector b, find a vector ¥ such that A% = b. We consider
the case where one docs not need o know the w|u\mn  tsell, but rater an approximtion of the

with %, .

. In this case, when A

opes
B oy, NV and s condiion nmber . he oot known easica agorms cn i £ and
estimate £1 M in time scaling roughly as N, Here, we exhibit a quantum algorithm for cstimating
1M whose runtime is a polynomial of log(N) and . Indeec, for small values of  li.c. poly log(N)], we
prove (using some common complexity-theorctic assumptions) that any classical algorithm for this
problem gencrically requires exponentially more time than our quantum algorith.

DOL: 10.1103PhysRevLet 103150502

Introduction—Quantum computers are devices that har-
‘mechanics to perform computations in ways

computers cannot. For certain problems,
algorithms supply exponenal specdups over

PACS nun

cr 0367.Ac, 0210Ud, B9T0Fg

However, the condition number often scales with the size
of the problem, which presents a more serious limitation of
our algorithm. Coping with large condition numbers has
been studied extensively in the context of classical algo-
ithms. In the discussion scction, we will describe the

their classical counterparts, 1  famous example
i

speedups are known, and those that are (such as the use of

fers to simulate other quantum systems
[21) have so far found limited use outside the domain of
quantum mechanics, This Letter presents a quantum algo-
rithm t0 estimate features of the solution of a set of linear
equations. Compared to classical algorithms for the same
task, our algorithm can be as much as exponentially faster.

inear equations play an important role in virtually al
fields of science and engineering. The sizes of the data sets
that define the equations are growing rapidly over time, 5o
that terabytes and even petabytes of data may need to be
asolution. Tn other cases, such as when
discretizing partial differential equations, the linear equa-
tions may be implicitly defined and thus far larger than the
original description of the problem. For a classical com-
en 10 approximate the solution of Nlinear equa-
tions in N unknowns in gencral requires time that scales at
least as . Indeed, merely to write out the solution takes
time of order N. Frequently, however, one is interested not
e . ;

some function of that solution, such as determin
total weight of some subset of the indices.

‘We show that in some cases, a quantum computer can
approximate the value of such a function in time which
scales logarithmically in N, and polynomially in the con-
diion umber defined below) and desird precision. The
dependence on N is exponentally better than what is
achievable \.hxuca“y, while the dependence on condition
number is comparable, and the dependence on error is
worse. Typically, the accuracy required s not very large.

e the

0031-9007/09/103(15)/150502(4) 150502-1

preconditioners) o our quantum algorithm.

‘We sketch here the basic idea of our algorithm and then
discuss it in more detail in the next section. Given a
Hermitian N X N matrix A, and a unit vector b, suppose
we would like (0 find ¥ satisfying A% = b. (We discuss
later questions of efficiency as well 2s how the assumptions
we have made about A and  can be relaxed.) First, the
algorithm represents  as a quantum state | Bl
Next, we use techniques of Hamiltonian simulation [3.4] to
apply ¢ (0 |b) for a superposition of different Gmes 1.
“This ability to exponentiate A translates, via the well-

e (5,61, into the ability
to decompose |1 in the cigenbasis of A and to find the
corresponding cigenvalucs A;. Informally, the statc of the
system after this stage is close to SV, B,1u,)|A,). where u;
i the cigenvector basis of A, and |) ~ 3., B,lu;). We
would then ke to perform the lincar map taking [A,) to
CA7'IA), where C is a normalizing constant. As this
operation is not unitary, it has some probability of failing,
which will enter into our discussion of the runtime bel
After it succeeds, we uncompute the |,) registe
Teft with a state proportional to 3, B;A;"lu))
A7) = 1.

An important factor in the performance of the matrix
inversion algorithm is x, the condition number of A, or the
ratio between A’s largest and smallest cigenvalues. As the
condition number grows, A becomes closer to a matrix
which cannot be imieid, and the solutions become less
stable. Our algorithms wil generally assume that the sin-

© 2009 The American Physical Socicty
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A Quantum Approximate Optimization Algorithm

Edward Farhi and Jeffrey Goldstone
Center for Theoretical Physics
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Cambridge, MA 02139

Sam Gutmann

Abstract
We introduce a quantum algorithm that produces approximate solutions for combinatorial op-
timization problems. The algorithm depends on an integer p > 1 and the quality of the approx-
imation improves as p is increased. The quantum circuit that implements the algorithm consists
of unitary gates whose locality is at most the locality of the objective function whose optimum is

sought. The depth of the c

uit grows linearly with p times (at worst) the number of constraints.
1 p is fixed, that is, independent of the input size, the algorithm makes use of efficient classical pre-

processing. If p grows with the input size a different strategy is proposed. We

udy the algorithm
as applicd to MaxCut on regular graphs and analyze its performance on 2-regular and 3-regular
graphs for fixed p. For p = 1, on 3-regular graphs the quantum algorithm always finds a cut that

is at least 0.6924 times the size of the optimal cut.

The power of quantum neural networks

A

a Abbas'?, David Sutter’, Christa Zoufal'?, Aurelien Lucchi®, Alessio Figalli* and Stefan Woerner '

question by trying

popt

an rybicet

data. Crucially,

measure that depends on the Fisher information, which allows us to gauge the ability of a modl to train. We demonslrabe

ically that a class of quantum neural networks is able to

umer
Tablo foadforward notworks and train faster, suggesting an advantage for quantum machine learning, which we vervfy oot

quantum hardware.

he power of a model lies in its ability to fit a variety of func-
jons'. In machine learning, power is often referred (o as a
model’s capacity to express different relationships between
variables’. Deep neural networks have proven to be extremely pow-
erful models, capable of capturing intricate relationships by learn-
ing from data’. Quantum neural networks serve as a newer class of
machine lcarning models that are deployed on quantum computers
and use quantum effects such as superposition, entanglement and
interference to perform computation. Some proposals for quantum

mpa-

We turn our attention to measures that are easy to estimate in
practice and, importantly, incorporate the distribution of data. In
particular, measures such as the effective dimension have been
motivated from an information-theoretic standpoint and depend
on the Fisher information, a quantity that describes the geometry
of 2 model parameter space and is essential in both statistics and
‘machine learning” . We argue that the effective dimension is a
robust capacity measure through proof of a generalization error
bound and mppnmng ] salpcs nd thos use this mes

as speed-ups in training and faster processing. Although there has
been much devclopment in the growing ficd of quantum machine
the
i s yet to be mnduﬂed“. In particular, the ques
Lion of whethe quantum ncural nctworks are more powerful than
lassical neural networks is sill open.
A common way to quantify the power of a model is by its com
plexity”. In statistical learning theory, the Vapnik-Chervonenkis
dimension is an established complexity measure, where error

Cassical 3nd quantam regimer.
Despite a lack of quantitative statements on the power of quan-
tum neural networks, another ssue i rooied in the trainabiliy
of these models. A precise connection between expressibility and
trainability for certan clsses of quantum neural networks i out
lined in refs. **. Quantum neural networks often suffer from the
barren plateau phenomenon, wheren the loss andscape is peril
ously flat and parameter optimization is therefore extremely diffi-
U s Shown i vl e s my e o ndcl
n the hardware. In other

st can b deve. Altough the Vapnik-Chervonenkis dimen
sion has attractive properties in theory, computing it in practice is
nomnmlymfmh Furthermore, using the Vapnik-Chervonenkis

n 1o bound generalization error requires several unreal-
istic asmlmplinn. including that the model has access to infinite
data™". The measure also scales with the number of parameters
in the model and ignores the distribution of data. As modern deep
neural networks are heavily overparameterized, generalization
bounds based on the Vapnik-Chervonenkis dimension—and other
measures alike—are typically vacuous'"".

In ref. *, the authors analyzed the expressive power of param
eterized quantum circuits using memory capacity and found that
quantum neural networks had limited advantages over classical
neural networks. Memory capacity is, however, closely related to
the Vapnik-Chervonenkis dimension and is thus subject to sim
ilar criticisms. In ref. *, a quantum neural network is presented
that exhibits a higher expressibility than certain classical models,
captured by the types of probability distributions it can gener-
ate. Another result from ref. *' is based on strong heuristics and

rovides systematic examples of possible advantages for quantum
neural networks.

d
ords,the ffect of Sardwace oiee can makc it very diffcult to
th ba

induced, which relates to e design ofa odland vt param
eter initialization. Methods to avoid the latter have been explored
in refs. %, but noise-induced barren plateaus remain problematic.
A particular attempt to understand the loss landscape of quan-
tum models uses the Hessian®, which quantifies the curvature of a
‘model loss function at a point in its parameter space”. Properties
of the Hessian, such as its spectrum, provide useful diagnostic
information on the trainability of a model”. It was discovered that
the entries of the Hessian vanish exponentially in models suffering
from a barren plateau®. For certain loss functions, the Fisher infor-
mation matix cincides with the Hessian of the loss function”
and clas-
gy by analyzing the Fisher information marix,
which is incorporated by the effective dimension. In this way, we
‘may explicitly relate the effective dimension to model trainability*.
‘We find that

a considerably higher capacity and faster training ability numeri
comparable classical feedforward neural networks. A
igher capacity igh whereas

15M Quantum, 1M Rscorch—Zuric, Rcschikon,Swizerad, Uniorst of Koz Natal, Durban St A ETH Zrch, Zuich, Swhzetand
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Quantum Variational Algorithm (QVA)

Power of QVA
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Cambridge, MA 02139

Sam Gutmann

Abstract,

We introduce a quantum algorithm that produces imate solutions for combinatorial op-

timization problems. The algorithm depends on an integer p > 1 and the quality of the approx-
imation improves as p is increased. The quantum circuit that implements the algorithm consists
of unitary gates whose locality is at most the locality of the objective function whose optimum is

sought. The depth of the circuit grows linearly with p times (at worst) the number of constraints.

If pis fixed, that is, independent of the input size, the algorithm makes use of efficient cla pre-
processing. If p grows with the input size a different strategy is proposed. We study the algorithm
as applied to MaxCut on regular graphs and analyze its performance on 2-regular and 3-regular
graphs for fixed p. For p = 1, on 3-regular graphs the quantum algorithm always finds a cut that

is at least 0.6924 times the size of the optimal cut.

The power of quantum neural networks

Amira Abbas'?, David Sutter', Christa Zoufal'?, Aurelien Lucchi®, Alessio Figalli* and Stefan Woerner©'=

question by trying

prove that it can be

used to assess any statistical model's abil

measure that depends on the Fisher information, which allows us to gauge the ability of a model to

in. We demonstrate

numerically that a class of quantum neural networks is able to achieve a considerably better effective dimension than compa-
rable feedforward networks and train faster, suggesting an advantage for quantum machine learning, which we verify on real

quantum hardware.

he power of a model lies in its ability to fit a variety of func.
tions'. In machine learning, power is often referred to as a
del's capacity to express different relationships between
. Deep neural networks have proven to be extremely pow-
erful models, capable of capturing intricate relationships by learn
ing from data’. Quantum neural networks serve as a newer class of
‘machine learning models that are deployed on quantum computers
and use quantum effects such as superposition, entanglement and
nterierence perform computation. Some proposals or quantum

‘We turn our attention to measures that are easy to estimate in
practice and, importantly, incorporate the distribution of data. In
particular, measures such as the effective dimension have been
Totivated from an information-theorti standpoint and depend
on the Fisher information, a quantity that describes the geo
of a models parameter space and is essential in both statis
machine learniog™% We uge tht he effcive dier
robust capacity measure through proof of a general error
bound and supporting numerical analyses, and n.m use ﬂu\ mea

as speed-ups in training and faster processing. Although there has
been much development i the growing fed of quantum machine
learning, a systematic study of the trade off and
classical models has yet to be conducted”. P partcular, the ques-
tion of whether quantum neural networks are more powerful than
classical neural networks is still open.

A common vy o quanify the powe of model s by s cony
plexity”. In statistical learning theory, th
Ririon s i casbii compleity messure, where. error

sureto po pop inboth
clasical and quantum regimes

Despite a lack of quantitative statements on the power of quan-
tum neural networks, another issue is rooted in the t
of these models. A precise connection between expressibil
trainability for certain classes of quantum neural networks is out
lined in refs. tum neural networks often suffer from the
barren plateau phenomenon, wherein the loss landscape is peril
ously flat and parameter optimization is therefore extremely diffi-
. Asshows i ref = barre plaeaes may be pose inied,
e models are assumed on the hardware. In other

data) can be derived". Although the Vapnik-Chervonenkis dimen
sion has attractive propertics in theory, computing it in practice is
notoriously difficult. Furthermore, using the Vapnik-Chervonenkis
dimension to bound generalization crror requires several unreal-
istic assumptions, including that the model has access Lo infinite
data®™", The measure also scales with the number of parameters
in the model and ignores the distribution of data. As modern decp
neural networks are heavily overparameterized, generalization
bounds based on the Vapnik-Chervonenkis dimension—and other
measures alike—are typically vacuous'"".

In ref. *, the authors analyzed the expressive power of param
eterized quantum circuits using memory capacity and found that
quantum neural networks had limited advantages over classical
neural networks. Memory capacity is, however, closely related to
the Vapnik-Chervonenkis dimension and is thus sub
+ quantum neurs networ

<aptured by the types of probabily distribut

te. Another result from ref. ased on umnh
provides sysematic cxamples of pnwhl: sdvantages for quantum
neural networks.

wnm\, e clfct of hardware noise can make it very difficalt o
train a quantum model. Furthermore, barren plateaus can be circuit
induced, which relates to the design of 2 model and random param
eter Methods to avoid the latter have been explored
in refs. %, but noise-induced barren plateaus remain problemati.
A particular atiempt to understand the loss landscape of quan-
tum models uses the Hessian, which quantifies the curvature of a
‘model’s loss function at a point in its parameter space”. Properties
of the Hessian, such as its spectrum, provide useful diagnostic
information on the trainability of a model”. It was discovered that
the entries of the Hessian vanish exponentially in models suffering
from a barren plateau®. For certain loss functions, the Fisher infor-
mation matix coincides with the Hessian o the loss unction”.
y d clas-
oyt by analyzing the Fisher information matrix,
which is incorporated by the effective dimension. In thi
may explicily relate the ective dimension to model ran
We find th
a considerably higher capacity and faster training ability numeri
cally than comparable classical feedforward neural networks.
igher capacity i ig i whereas
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Power of QVA

2015

CPU: Optimization

GPU: Multiplication and
Addition




DLR.de ¢ Chart 18 > Lecture > Author ¢« Document > Date

Heterogeneous Computing : HPC+nQC nQC (or nQPUS):

superconducting,
neural atomic,

Imperfect Quantum photonic quantum
Computer computers, or
NISQ nQPUs: QVA quantum annealer

Classical Computer

GPU: Multiplication and
Addition

CPU: Optimization




DLR.de ¢ Chart 19 > Lecture > Author * Document > Date

Lets forget about quantum advantage. BUT What is exactly a quantum
computer and How to make it work for machine learning tasks or for
processing big datasets in Earth Observation?
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Quantum Variational Algorithm for Earth Observation: Case |

12288 elements

S. Otgonbaatar and M. Datcu, "Classification of Remote Sensing Images With Parameterized
Quantum Gates," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art
105, doi: 10.1109/LGRS.2021.3108014.
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Quantum Variational Algorithm for Earth Observation: Case |

Test QVA on a real-world RGB
image of Berlin, Germany
(trained QVA on Eurosat)

L

SVM (scikit-learn) CNN QVA
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Quantum Variational Algorithm for Earth Observation: Case Il

Data sets: different distribution

A

v

out-of-distribution? = physics to rescue




DLR.de ¢ Chart 23 > Lecture > Author ¢« Document > Date

Quantum Variational Algorithm for Earth Observation: Case Il

Data sets: different distribution

A

out-of-distribution? = guantum physics to rescue




Quantum Variational Algorithm for Earth Observation: Case Il
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Quantum Variational Algorithm for Earth Observation: Case Il
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Quantum Variational Algorithm for Earth Observation: Case Il

Data sets: different distribution

(d)

(1) (1) (1)

S. Otgonbaatar and M. Datcu, "Matural Embedding of the Stokes Parameters of Polarimetric
Synthetic Aperture Radar Images in a Gate-Based Quantum Computer,” in |[EEE Transactions on
Geoscience and Remaote Sensing, doii 10.1109/TGRS.2021.3110056.




Quantum Variational Algorithm for Earth Observation: Case Il
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Quantum Annealer for Earth Observation: Case IlI

original dataset coreset
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B Training dataset (a dataset size is 20)

|:| Test dataset S. Otgonbaatar and M. Datcu, "A Quantum Annealer for Subset Feature Selection and the Classification of Hyperspectral
Images," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 7057-7065,

2021, doi: 10.1109/JSTARS.£921.3095377.
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16: Stone-Steel-Towers

15: Building-Grass-Drives
14 Woods

13: Wheat

12: Soybean-clean

11: Soybean-mintill

10: Soybean-notill

g: Oats

8: Hay-windrowed

7: Grass-Pasture-mowed
6: Grass-Trees

g Grass-Pasture

4 Corn

3: Corn-mintill

2: Corn-notill

1- Alfalfa

Fig. 2. Our Indian Pine HSI with 16 classes: {1: Alfalfa,
2: Com-notill, 3: Corn-mintill, 4: Comn, 5: Grass-Pasture, 6:
Grass-Trees, 7: Grass-Pasture-mowed, 8: Hay-windrowed, 9:
Oats, 10: Soybean-notill, 11: Soybcan-mintill, 12: Soybean-
clean, 13: Wheat, 14: Woods, 15: Building-Grass-Drives, 16:
Stones-Steel-Towers.

Quantum Annealer for Earth Observation: Case IlI

Classes Data Size Coreset Size KL Divergence
{—1,+1} 100 20 0.008194
|setosa, versicolour] 100 22 0.053002
1,2} 295 79 0.573451
{2, 3} 452 56 0.003121
3, 4} 214 33 0.000600
{4, 5} 144 4 0.017201
{5, 6} 243 41 0.001823
{6, 7} 758 125 0.492636
{urban area, sea water} 61,465 501 0.125072
[vegetalion, sea waler] 61,465 343 0.272749
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The Last Slide of This Talk

Input big data How to

Hybrid classic-quantum computing

classical supercomputer

10),

B Sl v OVixlh

|«
WtV oVl [

Invent and analyse quantum machine learning networks Analyse and test the integration and support between
a quantum machine and a classical supercomputer

encoding
EO UCs 10); -

10)5

Identify Earth observation use
cases (EO UCs) of practical
relevance

T 2

Analyse a quantum machine and a classical supercomputer for real-
world, large scale datasets in order to obtain quantum advantage as early
and efficiently as possible
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Next Question: Can we really demonstrate qguantum advantage by
leveraging a HPC+nQC system over a conventional heterogeneous
system, since we now know what is a quantum computer and how

to make it work for large data sets?




Next Question: quantum advantage on HPC+nQC system
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Next Question: quantum advantage on HPC+nQC system
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