Otgonbaatar, Soronzonbold und Datcu, Mihai und Zhu, Xiao Xiang und Kranzlmüller, Dieter (2022) Quantum Machine Learning for Real-World, Large Scale Datasets with Applications in Earth Observation. AI4EO Symposium, 2022-10-13 - 2022-10-14, Ottobrunn, Munich, Germany.
PDF
210kB | |
PDF
1MB |
Offizielle URL: https://ai4eo.de/symposium
Kurzfassung
Quantum machine learning is the synergy between quantum computing resources and machine learning methods. In particular, quantum machine learning refers to quantum algorithms promising to compute some machine learning methods and optimization problems (polynomially) faster than conventional algorithms. Quantum algorithms for computing any problems are algorithms using a quantum computer. This work (I) identifies intractable real-world problems of practical significance which can be computed efficiently on a quantum computer, (II) provides an encoding strategy of real-world, large scale problems in a small-scale quantum computer, and (III) invents so-called hybrid classical-quantum (HPC+nQC) learning networks and analyses their performance in comparison to conventional machine (deep) learning methods in order to gain quantum advantage as early and efficiently as possible; here, HPC+nQC is referred to as high performance computing and n quantum computers, where n stands for n different types of quantum computers.
elib-URL des Eintrags: | https://elib.dlr.de/188906/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Quantum Machine Learning for Real-World, Large Scale Datasets with Applications in Earth Observation | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Oktober 2022 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 1-2 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | quantum computing, quantum machine learning, big data, earth observation, remote sensing | ||||||||||||||||||||
Veranstaltungstitel: | AI4EO Symposium | ||||||||||||||||||||
Veranstaltungsort: | Ottobrunn, Munich, Germany | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 13 Oktober 2022 | ||||||||||||||||||||
Veranstaltungsende: | 14 Oktober 2022 | ||||||||||||||||||||
Veranstalter : | Technical University of Munich | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||||||||||
Hinterlegt am: | 18 Okt 2022 13:32 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags