Beker, Teo and Ansari, Homa and Montazeri, Sina and Song, Qian and Zhu, Xiao Xiang (2022) Explainability Analysis of CNN in Detection of Volcanic Deformation Signal. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4851-4854. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883340.
PDF
6MB |
Official URL: https://ieeexplore.ieee.org/document/9883340
Abstract
With improvement in the processing of synthetic aperture radar interferometry (InSAR) data, the detection of long-term volcanic deformations becomes possible. While deep learning (DL) models are considered black-box models, challenging to debug, the advances in explainable AI (XAI) help understand the model and how it makes decisions. In this paper, the model is trained on synthetic InSAR velocity maps to detect slow, sustained deformations. XAI tools, including Grad-CAM and t-SNE, are utilized for understanding and improving the trained model. Grad-CAM helps identify the slope-induced signal and salt lake patterns responsible for the model’s mis-classifications. T-SNE feature representation visualizations are used to estimate data sets and model class separation ability. Additionally, a sensitivity analysis shows the model performance with different intensity deformation data and uncovers the minimal detectable deformations of 1 cm cumulative deformation over five years.
Item URL in elib: | https://elib.dlr.de/186554/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Explainability Analysis of CNN in Detection of Volcanic Deformation Signal | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883340 | ||||||||||||||||||||||||
Page Range: | pp. 4851-4854 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Explainable AI, Grad-CAM, Volcano Detection, InSAR, Sensitivity Analysis | ||||||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - SAR methods | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Remote Sensing Technology Institute > SAR Signal Processing | ||||||||||||||||||||||||
Deposited By: | Beker, Teo | ||||||||||||||||||||||||
Deposited On: | 24 May 2022 14:27 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:47 |
Repository Staff Only: item control page