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ABSTRACT

With improvement in the processing of synthetic aperture radar in-
terferometry (InSAR) data, the detection of long-term volcanic de-
formations becomes possible. While deep learning (DL) models are
considered black-box models, challenging to debug, the advances in
explainable AI (XAI) help understand the model and how it makes
decisions. In this paper, the model is trained on synthetic InSAR
velocity maps to detect slow, sustained deformations. XAI tools, in-
cluding Grad-CAM and t-SNE, are utilized for understanding and
improving the trained model. Grad-CAM helps identify the slope-
induced signal and salt lake patterns responsible for the model’s mis-
classifications. T-SNE feature representation visualizations are used
to estimate data sets and model class separation ability. Addition-
ally, a sensitivity analysis shows the model performance with differ-
ent intensity deformation data and uncovers the minimal detectable
deformations of 1 cm cumulative deformation over five years.

Index Terms— Explainable AI, Grad-CAM, Volcano Detec-
tion, InSAR, Sensitivity Analysis

1. INTRODUCTION

Tracking cataclysmic events is of high importance to people. Syn-
thetic Aperture Radar (SAR) satellites allow frequent measurements
of deformations on a global level, thus, enabling deep learning (DL)
to be applied to SAR Interferometry (InSAR) time-series for vol-
canic deformations detection [1]. In addition, advances in InSAR
velocity map processing make it possible to distinguish mm/yr level
deformations, facilitating more sensitive monitoring of volcanic de-
formations. However, to the author’s knowledge, there has not been
a previous attempt to use long-term velocity maps to detect slow,
sustained deformations.

DL in volcanic deformation detection using InSAR has been ap-
plied to detect short and long-term deformations. In [2] it is demon-
strated that short-term large-scale volcanic deformations can be de-
tected using Alexnet architecture. Time-series simulated data were
used to train an encoder-decoder architecture to filter out the noise
[3]. In [4], the noise is filtered out of a time series by using Indepen-
dent Component Analysis (ICA) algorithm, and in [5] the results are
improved by developing the ICASAR algorithm.

As the models become common and the community is more
acquainted with the concept, the (XAI) is given more importance.
While DL models are considered black-box, explainable AI (XAI)
practices help in debugging and make them more understandable.
According to [6], out of the compared techniques, Occlusion, Grad-
CAM and Lime are the most interpretable and reliable XAI meth-
ods. However, they have not been applied in volcanic deformation
detection. Among the techniques, Grad-CAM is the least computa-

tionally expensive, and it shows which patterns the model focuses on
and thus helps debug the model.

In this paper, we demonstrate how visual local and global “post-
hoc” XAI tools make the trained model for volcanic deformations
detection in the InSAR velocity map explainable. First, the Grad-
CAM approach has been implemented to see which features are es-
sential for model predictions. Then, t-SNE visualization of the ex-
tracted feature by the trained network has been used to compare test
and fine-tuning data distributions. Finally, the sensitivity analysis is
used to find the smallest detectable volcanic deformations. The ex-
planations received in this way were helpful to improve the model,
as it is presented hereinafter.

2. METHODOLOGY

Previously we trained a binary CNN classification network to deter-
mine whether the input image is a volcanic deformation map using
simulated data. However, when tested on real data, the accuracy
drops significantly. Thus, three XAI tools are introduced in this sec-
tion to explain the trained model and identify the problem. For an
explainability analysis, different aspects are considered:

• Gradient Class Activation Mapping (Grad-CAM) is used to
check if the model focuses on correct features in the input
images when making decisions.

• The feature representation analysis using t-distributed stochas-
tic neighbor embedding (t-SNE) is performed to compare the
fine-tuning set with the real test set.

• The sensitivity analysis is performed by scaling the real test
set images by selected temporal baselines and wrapping them
to see how small deformations the model can detect.

2.1. Grad-CAM

Grad-CAM [7] is a local post-hoc feature attribution saliency map
generation technique. It tracks the propagated gradient to show
where the model is “looking” when deciding. Unlike its predeces-
sors, Grad-CAM is general and allows the use on any model or any
layer of the model.

As the XAI methods get more researched and compared, Grad-
CAM is getting more recognition. While many feature attribution
methods suffer from the independence of model randomization and
label permutation, Grad-CAM does not [8]. According to [6], among
tested XAI approaches, it is one of the three most reliable methods
to be used in Earth observation.

This paper uses XAI to understand the model’s decisions and
identify why the model performance on the real test set was subop-
timal.



2.2. T-SNE Feature Representations

T-SNE is a widely-used unsupervised dimensionality reduction al-
gorithm [9]. In this paper, the CNN-extracted hyper-dimensional
features of fine-tuning and test sets are input to t-SNE. Then, the
received embedded two-dimensional (2D) features are used for vi-
sualization.

In CNNs, usually, convolutional layers are regarded as fea-
ture extractors. Outputs of the last convolutional layer (the second
last dense layer in this paper) can be seen as the extracted hyper-
dimensional features of the input images. It is vital to make sure that
the extracted features of the training set are consistent with that of
the test set for the same category. However, the high dimensionality
hinders the understanding of the features. Thus, the extracted fea-
tures of different sets are embedded for visualization purposes using
t-SNE.

2.3. Sensitivity Analysis

Sensitivity analysis shows us the smallest detectable volcanic de-
formation and how the model performance changes by changing the
data’s intensity. The sensitivity analysis tests the model performance
on the scaled test sets according to the temporal baselines from 1
- 6 years. Since the model is trained on cumulative deformations
over five years, this can also be understood as a change of wrapping
wavelength (1.11cm - 6.65cm). Because of wrapping, this approach
exposes the model to differently looking data, effectively creating
more diverse real test samples. As there are only ten deforming vol-
canoes in our real data test set, sensitivity analysis tests the model
on a broader range of scales of deformations. It allows us to deter-
mine the model’s performance more broadly and robustly. It also
enables us to find the smallest detectable deformation by our model.
This approach is not taking the signal-to-noise ratio (SNR) of the
deformation and residual atmospheric noise and slope-induced sig-
nal into the analysis, which can be considered the same for an image
changing the temporal baseline.

To evaluate the model sensitivity, we compare the metrics of re-
call, precision, and FPR. Besides the metrics, the number of detected
frames with volcanic deformations will be recorded, and the scale of
the minimal detected deformations.

3. RESULTS

3.1. Data and Model

The velocity maps [10] extracted from large interferometric stacks
spanning about five years of the region of the central South Ameri-
can Andes were used. The complete real data are reserved as the test
set. A real test set was created by cropping velocity maps around
volcanoes and transforming them into cumulative deformations over
five years. The cumulative deformations are wrapped between -π
and π [1], given the Sentinel-1 wavelength of ≈ 5.547 cm. The
spatial resolution of 200m and extent of 102.4 km by 102.4 km was
used to create the frames. The frames were patched using 75% over-
lap. The test set is highly imbalanced given a limited number of
deforming volcanoes. Since the real data after the creation of the ve-
locity maps are scarce, the simulations of the residual noise [4], and
volcanic deformations [11] were used to create a balanced synthetic
training (297,752 samples) and validation set (33,082 samples).

After comparing six different model architectures on the real test
set, InceptionResNet v2 was chosen as the classifier for volcanic de-
formation detection, as it gave the best performance by a margin.
Nevertheless, none of the models gave satisfactory results, the best

model achieving 58% area under the curve receiver operating char-
acteristic (AUC ROC).

3.2. Unaccounted Patterns

The saliency maps are plotted for three real velocity maps in Fig 1
using the Grad-CAM technique. In some samples, Grad-CAM
scores in areas with salt lakes and slope-induced signals are signifi-
cantly high. Furthermore, the model predicted the first two samples
as volcanic deformations with high confidence (65.35% and 100%),
implying that the model confused salt lakes and slope-induced sig-
nals for volcanic deformations. In the bottom case, it is correctly
classified for the wrong reasons. The right column shows more
feasible Grad-CAM maps and classification probabilities achieved
after fine-tuning.

Fig. 1: The velocity maps are on the left, and the Grad-CAM maps
of the model trained on synthetic data and fine-tuning set, are shown
in the middle and on the right.

The results of Grad-CAM suggest that it is necessary to fine-tune
the model with additional data. Therefore, we trained the last layer
of the model with a hybrid synthetic-real set.

The fine-tuning set was extracted from the mountainous region
around the volcanoes. It did not include any area used by the real
test set but always collected samples close around it. This way,
the extracted slope-induced signal resembled the one in the real test
set. 836 patches were extracted this way. Half was used as a non-
volcanic deformation class, and to the other half, simulated volcanic
deformations were added to form a volcanic deformation class.

The fine-tuned models performed significantly better than the
original synthetic model, as is represented by the increase from 58%
to 86% AUC ROC. Besides, based on the saliency maps (right col-
umn in Fig. 1) of the same three velocity maps created by Grad-
CAM on the fine-tuned model, the model now paid more attention
to the volcanic deformation patterns.



Fig. 2: The comparison of samples of real and fine-tuning set visual-
ized using t-SNE. The fine-tuning data are different to real data, but
there is a significant overlap of distributions.

Fig. 3: Comparison of the data sets used. The synthetic set did not
account for slope-induced patterns. Therefore, it is similar only to
low-pass filtered real data. Meanwhile, the fine-tuning set is similar
to the real test set. Note: The test set is the only set using real veloc-
ity maps.

Fig. 4: T-SNE transformation of feature space of FT4 model on the
real test data, showing the sample with and without volcanic defor-
mations. It is noticeable that the majority of the volcanic deforma-
tions are grouped well together, while there are smaller clusters and
about 10 examples of partial deformations which are further away
from these clusters.

3.3. Similarity of Data Sets and Separability of Classes

First, the fine-tuning and real test set feature representations were
compared. The features were extracted from the fine-tuned model’s
second last, flattening layer. The layer contains 1536 features. These
features represent the high-level visual features of the images. The
features were coded to two dimensions using the t-SNE model,
which can be seen in Fig 2. Visual analysis shows that while the
fine-tuning set is similar to the real data set, it does have a slightly
different distribution. Most of the fine-tuning set volcanic defor-
mations are grouped, containing only a couple of the real test set
volcanic deformations. The same goes for the real test set volcanic
deformations. That means that most volcanic samples are noticeably
different between the sets. Both sets cover a large area of slope-
induced signal, but a couple of clusters are not accounted for by the
fine-tuning set, pointing to the imperfections of the fine-tuning set.
The improvements over the initial training set can be seen in Fig 3.

We can check how the images are grouped or separated by the
fine-tuned model in Fig 4. This is a visual confirmation that the
images are grouped well by the visible patterns. It is also noticeable
that besides the patterns, the intensity of the deformation plays a
significant role in grouping the images.

3.4. Sensitivity Analysis

Fig. 5: Sensitivity analysis - testing the model performance using
the different temporal baselines of the real test set data. Precision in-
creases up to three years and declines afterwards. This happens for
the class imbalance, only about 20% of the real test set is positive,
and therefore as soon as the FPR starts increasing at faster rate the
Precision drops. Recall peaks at 5 years, which is the time period the
model was trained for. The minimal volcanic deformation detection
threshold moves with the increase of the temporal baseline, starting
with 1 cm at temporal baseline of 2 years. The number of detected
volcanoes shows if every used frame containing volcanic deforma-
tions has at least one patch flagging it as positive.

Finally, to estimate the performance of the model detection capa-
bilities, we checked the scale of the volcanic deformations which the
model can detect. Since the real test set was limited, we performed a
sensitivity analysis by scaling the temporal baseline of the data from
1-6 years. The model was trained on the ∼ 5 year temporal baseline.
Exposing the model to the different temporal baselines shows how
the model performs with the increased or decreased intensity of the
signal while exposing it to data looking slightly different from the



original (because of the wrapping process). The results can be seen
in Fig 5.

The results show that the minimal detected volcanic deformation
is about 1 cm. The same detected volcano, Cordon Del Azufre, stays
the minimal detected deformation throughout the temporal baselines.
First, correct classifications happen from two year temporal baseline,
thus implying there is a threshold for the smallest detection, even
though the SNR stays about the same.

Precision is the highest at the temporal baseline of 3 years, after
which it starts falling off with the increase of the FPR. Also, nine
out of ten frames containing volcanic deformations are detected at
the same baseline. The late detection of the tenth frame can be ex-
plained by it containing only the edge of deformation (not contain-
ing the center of the volcano) of the Sabancaya volcano. The recall
is highest at five years, the model’s original baseline, and it declines
afterward as the noise signal becomes pronounced and wrapping cre-
ates more edges in the images.

4. CONCLUSION

In this paper, the XAI tools are demonstrated to help improve the
DL model and understand its decisions and why it makes them. The
Grad-CAM analysis identifies the presence and significance of the
slope-induced signal and salt lakes in the real test set. With this
knowledge, the model is fine-tuned to improve its performance.

The feature representations analysis compares the fine-tuning set
to the real set. While the fine-tuning set is quite similar to the real test
set, there are detected differences in distributions. Feature represen-
tations are also used to examine the ability of the model to separate
the volcanic deformations from the other patterns in the data.

Finally, the sensitivity analysis is performed to determine the
model’s performance with a change of the temporal baseline. The
minimal detectable deformation is identified, measuring 1cm at two
year baseline. All of the volcanoes whose center is contained in the
data can already be detected at three years temporal baseline, which
is also the point giving the highest precision and relatively low FPR.

Using explainability to guide the modeling process can ease the
work with the black-box models and give significant insights into
the models’ decision-making process. This work brings insights to
improve the model performance and suggest future steps to improve
the fine-tuning sets.
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