Beker, Teo und Ansari, Homa und Montazeri, Sina und Song, Qian und Zhu, Xiao Xiang (2022) Explainability Analysis of CNN in Detection of Volcanic Deformation Signal. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 4851-4854. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883340.
PDF
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883340
Kurzfassung
With improvement in the processing of synthetic aperture radar interferometry (InSAR) data, the detection of long-term volcanic deformations becomes possible. While deep learning (DL) models are considered black-box models, challenging to debug, the advances in explainable AI (XAI) help understand the model and how it makes decisions. In this paper, the model is trained on synthetic InSAR velocity maps to detect slow, sustained deformations. XAI tools, including Grad-CAM and t-SNE, are utilized for understanding and improving the trained model. Grad-CAM helps identify the slope-induced signal and salt lake patterns responsible for the model’s mis-classifications. T-SNE feature representation visualizations are used to estimate data sets and model class separation ability. Additionally, a sensitivity analysis shows the model performance with different intensity deformation data and uncovers the minimal detectable deformations of 1 cm cumulative deformation over five years.
elib-URL des Eintrags: | https://elib.dlr.de/186554/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Explainability Analysis of CNN in Detection of Volcanic Deformation Signal | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883340 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 4851-4854 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Explainable AI, Grad-CAM, Volcano Detection, InSAR, Sensitivity Analysis | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - SAR-Methoden | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||
Hinterlegt von: | Beker, Teo | ||||||||||||||||||||||||
Hinterlegt am: | 24 Mai 2022 14:27 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags