Görner, Martin and Albu-Schäffer, Alin Olimpiu (2013) A robust sagittal plane hexapedal running model with serial elastic actuation and simple periodic feedforward control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2013, 2013-11-03 - 2013-11-08, Tokio, Japan. doi: 10.1109/iros.2013.6697166.
![]()
|
PDF
704kB |
Abstract
In this article we present a sagittal plane, sprawled posture hexapedal running model with distributed body inertia, massless legs and serial elastic actuation at the hips as well as along the telescoping legs. We show by simulation that simple, periodic, feedforward controlled actuation is sufficient to obtain steady period 1 running gaits at twice the actuation frequency. We observe a nearly linear relation of average running speed and actuation frequency. The ground reaction profiles of the legs show leg specialization as observed in running insects. Interleg phasing has a strong influence on the foot fall sequence and thus the overall body dynamics. While the single leg ground reaction force profiles show little dependency on interleg actuation phase the total reaction force does. Thus, depending on the interleg actuation phase body motions without flight phase are observed as well as body motions and total ground reaction forces that show similarities to those obtained for the spring loaded inverted pendulum model. Further, we show that including leg damping and a ground friction model the periodic orbits have a large region of attraction with respect to the initial conditions. Additionally, the model quickly rejects step up and step down disturbances as well as force impulses. Finally, we briefly discuss the energetics of the hexapedal running model.
Item URL in elib: | https://elib.dlr.de/84824/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Additional Information: | Corrected version: non-zero leg damping values given in text, captions and legends are corrected. The original confererence publication presents leg damping values that are to small by a factor of ~10. The simulation results in the original and the corrected version are equal, just the leg damping values have been stated wrong. | ||||||||||||
Title: | A robust sagittal plane hexapedal running model with serial elastic actuation and simple periodic feedforward control | ||||||||||||
Authors: |
| ||||||||||||
Date: | November 2013 | ||||||||||||
Journal or Publication Title: | IEEE/RSJ International Conference on Intelligent Robots and Systems | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | No | ||||||||||||
In ISI Web of Science: | Yes | ||||||||||||
DOI: | 10.1109/iros.2013.6697166 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | hexapod, running, serial elastic actuation | ||||||||||||
Event Title: | IROS 2013 | ||||||||||||
Event Location: | Tokio, Japan | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 3 November 2013 | ||||||||||||
Event End Date: | 8 November 2013 | ||||||||||||
Organizer: | IEEE/RSJ | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||
DLR - Research theme (Project): | R - Terrestrial Assistance Robotics (old) | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) Institute of Robotics and Mechatronics (since 2013) > Mechatronic Components and Systems | ||||||||||||
Deposited By: | Görner, Martin | ||||||||||||
Deposited On: | 16 Dec 2013 15:29 | ||||||||||||
Last Modified: | 04 Feb 2025 09:25 |
Repository Staff Only: item control page