elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

AI-Based Vehicle State Estimation Using Multi-Sensor Perception and Real-World Data

Ruggaber, Julian und Pölzleitner, Daniel und Brembeck, Jonathan (2025) AI-Based Vehicle State Estimation Using Multi-Sensor Perception and Real-World Data. Sensors, 25 (14), Seite 4253. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s25144253. ISSN 1424-8220.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
11MB

Offizielle URL: https://doi.org/10.3390/s25144253

Kurzfassung

With the rise of vehicle automation, accurate estimation of driving dynamics has become crucial for ensuring safe and efficient operation. Vehicle dynamics control systems rely on these estimates to provide necessary control variables for stabilizing vehicles in various scenarios. Traditional model-based methods use wheel-related measurements, such as steering angle or wheel speed, as inputs. However, under low-traction conditions, e.g., on icy surfaces, these measurements often fail to deliver trustworthy information about the vehicle states. In such critical situations, precise estimation is essential for effective system intervention. This work introduces an AI-based approach that leverages perception sensor data, specifically camera images and lidar point clouds. By using relative kinematic relationships, it bypasses the complexities of vehicle and tire dynamics and enables robust estimation across all scenarios. Optical and scene flow are extracted from the sensor data and processed by a recurrent neural network to infer vehicle states. The proposed method is vehicle-agnostic, allowing trained models to be deployed across different platforms without additional calibration. Experimental results based on real-world data demonstrate that the AI-based estimator presented in this work achieves accurate and robust results under various conditions. Particularly in low-friction scenarios, it significantly outperforms conventional model-based approaches.

elib-URL des Eintrags:https://elib.dlr.de/215147/
Dokumentart:Zeitschriftenbeitrag
Titel:AI-Based Vehicle State Estimation Using Multi-Sensor Perception and Real-World Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ruggaber, JulianJulian.Ruggaber (at) dlr.dehttps://orcid.org/0000-0003-4300-9104NICHT SPEZIFIZIERT
Pölzleitner, Danieldaniel.poelzleitner (at) dlr.dehttps://orcid.org/0009-0004-1873-3162188590159
Brembeck, Jonathanjonathan.brembeck (at) dlr.dehttps://orcid.org/0000-0002-7671-5251NICHT SPEZIFIZIERT
Datum:8 Juli 2025
Erschienen in:Sensors
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:25
DOI:10.3390/s25144253
Seitenbereich:Seite 4253
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:1424-8220
Status:veröffentlicht
Stichwörter:vehicle dynamics state estimation; AI-based vehicle state estimation; perception data for state estimation; camera; lidar; recurrent neural network; computer vision
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Fahrzeugkonzepte > Fahrzeug Systemdynamik und Regelungstechnik
Hinterlegt von: Ruggaber, Julian
Hinterlegt am:25 Jul 2025 08:57
Letzte Änderung:13 Aug 2025 11:34

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.