Ruggaber, Julian und Pölzleitner, Daniel und Brembeck, Jonathan (2025) AI-Based Vehicle State Estimation Using Multi-Sensor Perception and Real-World Data. Sensors, 25 (14), Seite 4253. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s25144253. ISSN 1424-8220.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: https://doi.org/10.3390/s25144253
Kurzfassung
With the rise of vehicle automation, accurate estimation of driving dynamics has become crucial for ensuring safe and efficient operation. Vehicle dynamics control systems rely on these estimates to provide necessary control variables for stabilizing vehicles in various scenarios. Traditional model-based methods use wheel-related measurements, such as steering angle or wheel speed, as inputs. However, under low-traction conditions, e.g., on icy surfaces, these measurements often fail to deliver trustworthy information about the vehicle states. In such critical situations, precise estimation is essential for effective system intervention. This work introduces an AI-based approach that leverages perception sensor data, specifically camera images and lidar point clouds. By using relative kinematic relationships, it bypasses the complexities of vehicle and tire dynamics and enables robust estimation across all scenarios. Optical and scene flow are extracted from the sensor data and processed by a recurrent neural network to infer vehicle states. The proposed method is vehicle-agnostic, allowing trained models to be deployed across different platforms without additional calibration. Experimental results based on real-world data demonstrate that the AI-based estimator presented in this work achieves accurate and robust results under various conditions. Particularly in low-friction scenarios, it significantly outperforms conventional model-based approaches.
elib-URL des Eintrags: | https://elib.dlr.de/215147/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | AI-Based Vehicle State Estimation Using Multi-Sensor Perception and Real-World Data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 8 Juli 2025 | ||||||||||||||||
Erschienen in: | Sensors | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 25 | ||||||||||||||||
DOI: | 10.3390/s25144253 | ||||||||||||||||
Seitenbereich: | Seite 4253 | ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 1424-8220 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | vehicle dynamics state estimation; AI-based vehicle state estimation; perception data for state estimation; camera; lidar; recurrent neural network; computer vision | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Fahrzeugkonzepte > Fahrzeug Systemdynamik und Regelungstechnik | ||||||||||||||||
Hinterlegt von: | Ruggaber, Julian | ||||||||||||||||
Hinterlegt am: | 25 Jul 2025 08:57 | ||||||||||||||||
Letzte Änderung: | 13 Aug 2025 11:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags