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Abstract

With the rise of vehicle automation, accurate estimation of driving dynamics has become
crucial for ensuring safe and efficient operation. Vehicle dynamics control systems rely on
these estimates to provide necessary control variables for stabilizing vehicles in various
scenarios. Traditional model-based methods use wheel-related measurements, such as
steering angle or wheel speed, as inputs. However, under low-traction conditions, e.g.,
on icy surfaces, these measurements often fail to deliver trustworthy information about
the vehicle states. In such critical situations, precise estimation is essential for effective
system intervention. This work introduces an Al-based approach that leverages perception
sensor data, specifically camera images and lidar point clouds. By using relative kinematic
relationships, it bypasses the complexities of vehicle and tire dynamics and enables robust
estimation across all scenarios. Optical and scene flow are extracted from the sensor data
and processed by a recurrent neural network to infer vehicle states. The proposed method
is vehicle-agnostic, allowing trained models to be deployed across different platforms
without additional calibration. Experimental results based on real-world data demonstrate
that the Al-based estimator presented in this work achieves accurate and robust results
under various conditions. Particularly in low-friction scenarios, it significantly outperforms
conventional model-based approaches.

Keywords: vehicle dynamics state estimation; Al-based vehicle state estimation; perception
data for state estimation; camera; lidar; recurrent neural network; computer vision

1. Introduction

State estimators are essential for modern vehicle technology, as they reconstruct
states that are difficult to measure on the basis of available sensor measurements using
mathematical models. They replace expensive, space-intensive hardware sensors using
virtual software sensors, thereby offering economic advantages such as lower costs and
reduced space and maintenance requirements. In recent years, the automotive industry
has seen rapid development toward ever-higher levels of automation, culminating in
numerous driver assistance functions and even fully autonomous driving. This trend is
only made possible by modern sensor technology and intelligent data processing. In this
context, vehicle state estimation is becoming increasingly important, as it provides precise
information needed for a wide range of driver assistance and vehicle control functions.
Advanced Driver Assistance Systems (ADASs) or vehicle dynamics control functions, such
as Electronic Stability Control (ESC), require precise information about current vehicle
states in order to work safely and efficiently. State estimators are therefore a key technology
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for the further development of modern vehicles. This work investigates the use of state
estimators for vehicle dynamics control functions and highlights the potential of perception
sensors such as cameras, lidars, and radars, which have been less utilized in this application
area so far but offer great opportunities.

1.1. Motivation and Potential of Perception Sensors for Estimating Vehicle Dynamics

The vehicle dynamic states of today’s production vehicles are estimated in most cases
using model-based approaches, which can range from very simple to complex vehicle
models. Simple models often use a basic representation of the vehicle and rely on pure
kinematic relationships. However, these approaches are inaccurate in many regions of the
vehicle state space. On the other hand, more complex models provide more precise results
but require detailed vehicle models, in which the main nonlinearity is represented by the
tire model. This model is a central component of this dynamic system, since it describes
the contact between the vehicle and the road surface. Its influence on the estimation of the
vehicle states is substantial, which is why it has been the subject of research for decades.
Among the best-known models is the Magic Formula by Pacejka [1], with Version 6.1
including over 200 parameters. These models often cannot be interpreted physically, which
is why the model is referred to as “magic”. Alternatively, the tire model TMeasy [2] offers a
better interpretability of the parameters, but also requires more than 50 values. Determining
the required parameters for both models requires complex tire measurements. Furthermore,
there is still uncertainty due to environmental influences such as temperature, air pressure,
road conditions, or tire wear.

Many of the vehicle state estimators used today rely on these tire models and incor-
porate sensor information such as vehicle accelerations or angular rates from an inertial
measurement unit (IMU) (see Figure 1, left part).
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Figure 1. Overview of the information flow from sensors via estimators to the vehicle states: con-
ventional approach using a vehicle model (left) and our proposed novel approach using perception
sensors and bypassing the complex vehicle and tire model (right).
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Recently, modern vehicles increasingly feature perception sensors such as cameras,
radar, or lidar systems that can provide high-quality information about the vehicle state.
These sensors make it possible to bypass the complex vehicle and tire system (see Figure 1,
right part). In this case, ego-motion can be estimated, for instance, from a sequence of
camera images by leveraging relative kinematic relationships, such as those observed when
passing a stationary object like a traffic sign (see Figure 1).

Bypassing the tire model also allows for a robust estimate in scenarios without any
traction between the tire and the road, such as when driving on ice with a friction coefficient
of u = 0. In such situations, the input variables of the vehicle model (e.g., steering wheel
angle and wheel speeds) are no longer linked to the actual vehicle state, which leads to
incorrect estimates in classical model-based approaches.

The novel state estimator presented in this work uses a perception model that is
based solely on relative kinematic relationships and is independent of specific vehicle or
environmental characteristics. The integration of modern perception sensors offers a new
way to enable precise and robust vehicle dynamics state estimation—even under difficult
conditions and without dependence on the tire model.

1.2. State of the Art

Vehicle state estimation using perception sensors is a key topic in automotive control
technology. This section provides an overview of the current state of the art, dividing it
into model-based and Al-based approaches. Furthermore, the work can be categorized into
two main application areas:

o  ADAS functions: These include systems such as lane keeping assist (LKA), traffic sign
recognition, adaptive cruise control (ACC), emergency brake assist, or localization and
object detection for trajectory planning

e  Vehicle dynamics control (VDC): Systems such as the electronic stability program
(ESC), anti-lock braking system (ABS), or other brake control systems.

In the case of ADAS functions, the localization and mapping of the ego vehicle play a
key role in the state estimation. A well-established state-of-the-art method in this area is
simultaneous localization and mapping (SLAM), which is available in a wide variety of
modifications [3].

The bandwidth required by vehicle dynamics control systems is significantly higher
than that of ADAS functions, since they must react to instabilities in real time. In contrast,
ADAS functions often work predictively and have more time to process complex data
from the vehicle’s surroundings [4,5]. Therefore, perception sensors are currently mainly
used for ADAS functions, whereas the use of this sensor information for vehicle dynamics
control is an active field of research [6]. To further explore the potential of this topic, the
underlying work proposes a framework developed for applications in vehicle dynamics
control estimation. The approaches to ADAS functions will not, however, be discussed in
detail in the following.

1.2.1. Discussion of Related Work

Table 1 shows related work on the use of perception sensors in vehicle state estimation,
categorized into the methods and application areas mentioned above. The table is intended
to provide a representative overview of the state of the art. Due to the multitude of different
approaches and the wide range of variations, no claim is made to completeness.

The work of [7] represents a model-based approach to state estimation for VDC. The
authors estimate the vehicle sideslip angle based on camera images. A vision model is used
to integrate information about the lane markings into a Kalman filter. Incorporating image
data improved the accuracy of the Kalman filter by almost 30 percent using a single-track
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model. The process was able to be operated in real time with a sampling time of 1 ms on an
embedded computer.

The authors of [8] deal with the roll angle estimation for a motorcycle, which is an
important control variable for the stability control system. For this purpose, the orientation
of the camera images is used as a gradient, integrated in an extended Kalman filter. It was
shown that a robust estimation of the roll angle was possible with an average precision of
two degrees.

A framework called RAVE (RAdar Velocity Estimator) was developed in [9] to estimate
the ego vehicle velocities. It is based on 3D radar measurements using a new filter method
for outlier detection. Compared to other radar-based estimation methods, it was shown that
outliers can be effectively detected and the estimates can be significantly improved. The
framework is offered as an open-source software package and provides a Robot Operating
System (ROS) interface.

In the field of Al-based approaches to vehicle state estimation, the authors of [10]
presented a framework that estimates ego vehicle velocities based on camera images. In
addition, the orientation, relative positions, and velocities of surrounding road users are
also estimated. Using several deep neural networks, the optical flow, depth, and bounding
boxes of other road users are determined using the camera images. The framework was
tested with real-world measurement data, allowing speeds to be estimated with a root
mean squared error (RMSE) < 0.7 m/s.

Table 1. Overview of related work on vehicle state estimation based on perception sensor information.

Approach

Application
Area

Model-Based

Al-Based

Advanced Driver
Assistance Systems (ADAS)

ACC-related estimates based on radar, lidar, and
camera data, and Kalman filter [11]

LKA-related estimates based on camera data and a
multirate Kalman filter [12]

Overview of localization and mapping methods, e.g.,

Vehicle’s ego-position estimation based on

. Radar measurements for object detection for
emergency brake assist [13]
. Lidar measurements using deep neural networks

for trajectory planning [3]

[14]
ACC target selection based on camera and radar

SLAM (Visual, lidar-based, Multi-sensor, RGB-D)
measurements [15]

Vehicle
Dynamics Control Systems
(VDCQ)

° LOAM . . . . .
e Visual Odometry Lane Estm}athﬂ with a single radar sensor using a
deep learning network [16]
) Via camera
Via camera . Estimation of ego vehicle velocity and states of

Via radar

Estimation of the roll angle of a motorcycle from
camera images by integrating the gradient of the
images in a Kalman filter [8]

Estimation of the vehicle’s sideslip angle via
camera images of road markings and integration | ®
into a Kalman filter [7]

surrounding traffic participants from camera
images using deep neural networks [10]

Via radar

Estimation of ego vehicle velocities based on two
4D radar sensors using convolutional neural
networks (CNN) [17]

Estimation of vehicle ego-velocities based on 3D Via camera, lidar, and radar

radar measurements using a new filter method .
for outlier detection [9]

Estimation of the vehicle’s sideslip angle from
camera, lidar, and radar sensor data using CNNs
and recurrent neural networks (RNN) [18]

In [17], a framework is presented, which uses the point clouds from two 4D radar
sensors to extract features with a convolutional neural network. These features are then
used to estimate the ego vehicle velocity and vehicle rotation rates using an encoder
followed by a regressor. The framework was trained and evaluated using a publicly
available reference radar dataset, achieving satisfactory results.

The authors in [18] propose a framework that estimates the vehicle’s sideslip angle
based on camera images, radar, and lidar point clouds. After a dimensionality reduction
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in the perception sensor data, a pre-trained convolutional neural network (CNN) is used
to calculate optical flows. These ones are then fused with all available IMU data using an
RNN. This Al estimator shows similar performance to an Extended Kalman Filter (EKF)
when compared with experimental data.

In addition to the work mentioned, there are also mixed approaches that cannot be
clearly assigned to any quadrant of Table 1. These include, for example, hybrid methods
that use a kinematic model with Al-processed perception sensor information [19], or the
combination of Al-processed camera, lidar, and radar data with a Kalman filter to estimate
the ego position of a vehicle [20].

1.2.2. Positioning of the Present Work

VDC requires the corresponding state estimators to be able to respond dynamically,
acting in high-dynamic closed-loop control. The processing of perception sensor data
must be completed in a range of milliseconds. When it comes to real-time processing
of this complex data or a mix of it (image data and point clouds), Al-based approaches
are becoming increasingly important thanks to their real-time capability [21]. These are
being developed at a rapid pace and are already state-of-the-art in many areas of computer
vision [22]. Therefore, Al-based methods were chosen for the framework presented in
this work.

In this work, both camera images and point cloud data from a lidar sensor will be
used to estimate the ego vehicle motion. The vehicle’s sideslip angle and vehicle velocity
represent key state variables and are estimated using Al techniques for vehicle dynamics
control systems. Our proposed method appears similar to the framework presented in [18]
(see Table 1 quadrant no. 4). However, there are fundamental differences in the way
the perception sensor data is considered: our approach uses the full 3D point cloud data
and therefore does not perform any 2D dimensional reduction, which would result in the
loss of valuable information. Moreover, instead of dense optical flow used in [18], our
approach makes use of sparse optical flow. This results in a significantly more efficient
neural network structure and has led to considerably better generalizability and estimation
results in our experiments.

1.3. Contribution of This Work

As outlined and discussed in the preceding sections, this work introduces several
novel contributions across different aspects. These can be summarized as follows:

e  The perception sensors are used for high-dynamic functions of vehicle dynamics
control systems instead of less dynamic top-level ADAS applications

e By using the tire-independent perception sensor information, two major improvements
arise for a vehicle dynamics state estimator:

e  Ease of application and transferability of the estimator to vehicle platforms of any kind.
Trained Al-based vehicle state estimators using perception sensors can be transferred
to any other vehicle without the need for adaptations.

e Robustification of vehicle state estimation. Estimation is also possible in driving
scenarios, in which there is no longer any traction between the tires and the road (e.g.,
when driving on an icy surface).

e  The state variables that are estimated are the vehicle sideslip angle as a safety-critical
variable, as well as the vehicle velocity, which is one of the most essential vehicle states
representing a basic variable for calculating a number of other VDC quantities.

e  The fundamental kinematic relationships between the vehicle states and the perception
sensor data are derived to gain a comprehensive understanding of the interactions.
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e  The performance of the developed toolchain is analyzed using real-world measure-
ment data from test drives and compared with proven model-based methods, such as
an Unscented Kalman Filter (UKF).

Overall, this work aims to enhance the accuracy, robustness, and transferability of
vehicle state estimation, thereby addressing the practical requirements of modern vehicle
dynamics control systems and enabling their effective application across a wide range of
vehicle platforms and driving scenarios.

2. System Architecture of the AI-Based Vehicle State Estimator Utilizing
Perception Sensors

The Al-based state estimator proposed in this work uses mono images from a camera
and point cloud data from a lidar sensor to perceive the vehicle environment. The tool
chain could be extended to include a radar sensor. This data is processed analogously to
the point cloud data of the lidar sensor. In addition to the perception sensors, the GNSS
(Global Navigation Satellite System)/IMU platform is used to incorporate the vehicle yaw
angle. This is necessary to separate the vehicle sideslip angle from the course angle, and is
described in Section 2.3.1 in more detail. Further information on the technical specification
of the sensors and their mounting and integration in the vehicle is provided in Section 3.1
and Appendix B. An overview of the complete tool chain of the state estimator is depicted
in Figure 2.

Lidar IMU (GNSS-aided)

Yaw angle
Data Pe
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Figure 2. Overview of the complete tool chain representing the vehicle state estimator. Symbol images
for object detection were sourced from You Only Look Once (YOLO) [23] and Complex YOLO [24],
while the remaining elements were designed by the authors. The depicted toolchain is referred to as
the ‘Novel Estimator’ (right-hand side) in Figure 1.
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This chapter presents various steps of the tool chain and briefly explains their under-
lying functional principles. Section 2.1 illustrates that object detection must first be carried
out on the recorded perception sensor data. This is necessary since it is not possible to
reconstruct the ego motion based on dynamic road users (e.g., oncoming traffic). For the
detection, the well-known You Only Look Once (YOLO) framework [23] is exploited for
the image data, and Complex YOLO [24] is used for the point cloud data. These algorithms
detect dynamic objects and filter them out of the data. The lidar point cloud, which contains
extensive information about the vehicle’s environment, requires preprocessing steps like
ground segmentation and downsampling, which are discussed in Section 2.2. The next
section explains the underlying theory for extracting information about the ego vehicle’s dy-
namics from its environment. Sections 2.3.2 and 2.3.3 present the calculation of the optical
flow from the image data and the scene flow from point cloud data, respectively. The depth
estimation from the image data required to correctly incorporate the sparse optical flow
in an RNN is shown in Section 2.3.2. The last section concludes how the aforementioned
variables (together with the vehicle yaw angle 1) are fused in a recurrent neural network
(RNN) and trained to determine the vehicle sideslip angle ¢ and velocity v°.

2.1. Detection of Dynamic Interfering Objects

The basic idea for estimating the ego-motion is based on the use of perception sensors
that, mounted on the vehicle 3 (t) = (xy, Yo, o), move within a geodetic coordinate system.
These sensors capture the surrounding environment and detect the motion relative to
stationary objects, with the position #5 () = (%o, Yo, 2,)® (see Figure 3).

A9
+obj ect
g
y 9
[)
g
ro /v
g
Ty vehicle
x g
>

Figure 3. Overview of the relationship between the vehicle, the sensors installed on it, and a
detected object.

Since the observed relative motion of these objects is caused solely by the motion of
the sensors on the vehicle, a back-calculation can be used to determine its ego-motion.
Dynamic objects (e.g., other vehicles or pedestrians) move independently of the observer.
These objects cannot be used to estimate ego-motion because their motion is unknown.
Therefore, they must be filtered out of the image and point cloud data.

Statement: The movement of dynamic objects provides no information about the
ego motion.

Proof. Given the position of the moving vehicle 75(t) = (x,(t),y»(t),z,(t))% and the
position of an object point 75 (t) = (x,(t),Yo(t),20(t))$, the relative position of the object
with respect to the vehicle is:

oo(t) = 15(8) = 7 (1). M
The relative velocity is given by the time differentiation of Equation (1):
() =15 (8) = 75(8). 2)
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A perception sensor, such as a stereo camera or a lidar, is capable of measuring the relative
position r‘g /,(t) and relative velocity r‘g /(1) of the object w.r.t. to the vehicle. In order to
estimate the vehicle’s ego motion # (t), Equation (2) can be resolved to:

P (t) =5 (1) =75, (). ®)

Hence, Equation (3) is underdetermined without any information about the object’s motion
i (). Only if the object is stationary, i.e., 74 (t) = 0, can the vehicle’s ego motion be uniquely
calculated as:

B(t) = —1 (1) )
O

2.1.1. Object Detection in Image Data via YOLO

There are a wide variety of methods for detecting objects in images. Classic approaches
such as the Deformable Parts Model or Histogram of Oriented Gradients are increasingly being
outperformed by Al-based methods [25], which often involve CNNs. There are two-stage
techniques that perform localization and classification. They generally achieve a high
level of accuracy but require high computational effort. In contrast, one-stage methods are
less accurate but faster and more efficient, which makes them more suitable for real-time
applications. The probably best-known method for one-stage methods is YOLO (You Only
Look Once) [23], which is widely used in both research and industry. YOLO was introduced
in 2015 and has been continuously developed since then, steadily increasing its popularity
and performance [26]. The algorithm divides an image into a grid of cells. Object detection
is carried out for each cell, whereby bounding boxes and class probabilities are determined
in each case. In the final step, overlapping bounding boxes are removed. YOLO detects
and classifies input images in a single pass through the CNN, making it extremely fast.

For the vehicle state estimation framework in this work, a YOLOv4 implementation in
TensorFlow is used [27]. The CNN employed was trained using the well-known Microsoft
Common Objects in Context (COCO) dataset [28]. Thus, dynamic objects such as people,
cyclists, cars, and trucks, which are relevant for this work, can be identified. Figure 4 shows
an example of an image evaluated in this way, which was taken with a camera mounted
above the windshield of our research vehicle during a test drive.

motorbike 0.74

Figure 4. Object detection via YOLOv4. The camera is mounted directly above the windshield and
captures the area in front of the vehicle.
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The bounding boxes for the dynamic objects identified by YOLO that meet the confi-
dence threshold of >0.5 are removed from the images because these objects are interfering
with the ego-motion estimation (see Section 2.1).

A given image can be described by a matrix I € R“*!, where w and ! describe the
width and length, respectively. The 1,y dynamic objects identified by YOLO are described
by a set of masks M M2, ... M"b  where each mask M € R?*! isa binary matrix with
the respective values:

i 1...dynamic object detected,
M, = 5
wil { 0...otherwise. ©)
The overall mask for image I is the pixel-by-pixel logical OR of the individual masks:
Mo = \/}2) M. 6)

The n,,; dynamic objects are masked out of the image I by setting their RGB pixel values to
0 (black). By applying the pixel-wise product (Hadamard product), it follows that

Imasked = 1O (1 - Mtotal)/ 7)
where 1 denotes a matrix of ones with the same dimensions as M-

2.1.2. Object Detection in Point Clouds via Complex YOLO

There are a variety of approaches available for object detection in point cloud data [29].
For the reasons discussed in Section 2.1, which primarily concern real-time capability and
efficiency, an Al-based approach is used for the point clouds in the vehicle state estimation
framework. To this end, an extension of the YOLO algorithm capable of handling 3D data is
used for image data. With the help of this extension called Complex-YOLO [24], objects can
be identified in a point cloud. In this work, a Pytorch implementation of Complex-YOLOv4
is used [30]. The algorithm transforms a 3D point cloud into a 2D bird’s-eye view RGB
image. This 2D image is processed by a modified YOLOv4 architecture, which estimates
the orientation of the recognized objects using an Euler region proposal network. The
recognized 2D bounding boxes are then projected into a 3D space, where the position, size,
and angle estimation are carried out in real time [24]. Figure 5 shows the object detection
of Complex-YOLO for a point cloud during a test drive we performed. The point cloud
consists of a set of 65,536 points (the interested reader is referred to Appendix B for more
information about the technical specifications).

The detected dynamic objects must be removed from the point cloud because, analo-
gously to the camera images, they represent interference with the ego-motion estimation.
The three-dimensional point cloud P considered at a fixed frame is defined as a set of points:

P={py,ps - Pesss6} Pi € R 8)

with the individual points p; = (x;,;,z;), which are described by their spatial coordinates.
The recognized dynamic objects are defined as clusters of points Oy, ; C P, for j =
1. ngpj, which can be described for a frame as:

Nobi
Odyn,total = U]i{ Odyn,j- )

The point cloud cleared of dynamic objects can then be expressed as:

Pron dyn — P~ Odyn,total' (10)
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Bird's eye view Pointcloud with projected detected objects

Figure 5. Applying Complex-YOLO to a lidar frame during an urban test drive. Left: bird’s eye
view image transformed from the point cloud, which is the basis for the dynamic object detection.
Right: original point cloud and the projected bounding boxes of the detected objects.

2.2. Preprocessing the Lidar Point Cloud

Prior to determining a motion from the point clouds using scene flow (see next section),
further preprocessing is necessary. This includes ground segmentation to eliminate the
ground for the scene flow calculation. In addition, a region of interest (ROI) can be defined
by an advantageous preselection. Finally, downsampling helps to considerably reduce the
number of relevant points.

2.2.1. Ground Segmentation

The scene flow resulting from the vehicle motion is calculated based on the difference
of the points between two frames (see next section). Since the ground generally has a low
texture and only limited visual features, calculating the scene flow based on these points is
very difficult. This applies in particular to homogeneous surfaces such as asphalt [31]. For
this reason, the points that belong to the ground should not be used for further calculations.

The point cloud without dynamic objects from Equation (10) Py, 4yn C R? is given,
with the individual points p; = (x;,y;, z;). The challenge for ground segmentation arises
from the fact that the ground is not a flat surface. Instead, the ground is defined as a
continuous surface:

G= {(xg,yg,zg) € R3‘z —flx,y) = 0}, (11)

where the function f(x, y) describes the relative height of the ground. The set of points that
do not belong to the ground is then:

Pron ground — {(x' y/Z) € Phon dyn|% _f(x/ y) > 0}' (12)
and the points that represent the ground:
Pground = {(X/y,z) € Ppon dyn|Z —flxy) = 0}- (13)

For the relationships described above, the following properties apply:
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Pyon ground N Pground =4, (14)
Pyon dyn — Pyon ground U Pground~

The authors of [32] presented an algorithm called Patchwork++ that solves the ground
segmentation problem efficiently and with low computational effort. To this end, the data
is divided into concentric zones with a separate ground plane fitted for each zone, thus
taking local variations into account. Figure 6 shows a point cloud frame that was recorded

during one of our test drives and to which ground segmentation was applied.

Figure 6. Left: The ground segmentation of a lidar frame for a serpentine drive. Green dots
correspond to the ground, red dots to non-ground. Right: Image from the camera for the reader’s
better understanding of the scenario.

The open-source Python implementation of Patchwork++ is used for the vehicle state
estimation framework in this work. The ground segmentation algorithm has proven its effi-
ciency in this challenging scenario with a serpentine road. First, it is capable of identifying
ground points lying at different relative heights during the uphill drive. Second, the algo-
rithm can reliably segment together different ground surfaces, such as road and meadow.
As discussed at the beginning of the section, only the non-ground points P,y ground are
used for further processing.

2.2.2. Considering a Region of Interest

Not all remaining points of the point cloud should be used to extract motion informa-
tion. The scene flow calculation carried out in Section 2.3.3. can be significantly improved
by a careful point pre-selection. This reduction in the point cloud can be performed by
defining a region of interest (ROI). The following aspects should be considered during
its selection:

e  The lidar sensor used has a range of up to 200 m. However, points at large distances
2 50 m are associated with a high degree of uncertainty or noise and should not
be used.

e  Due to the structural characteristics of a road, the longitudinal environment should be
considered at a longer distance than the lateral environment.

e  The maximum height of the points considered should be limited in order to avoid
reflections, for example, in moving treetops.

These considerations are implemented by an ROI, which can be described by an
ellipsoid (see Figure 7).
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Ego reflections

Color code

Removed points
Retained points

ROI defined by ellipsoid

Figure 7. The region of interest for the lidar point cloud is implemented using an ellipsoid. Red
points are removed, green points are kept. The ground is shown for visualization purposes, but is
actually removed beforehand by ground segmentation.

The center of the ellipsoid is located at the origin of the lidar sensor and has the
three semi-axes Xyax, Ymax, and Zyay, which define the maximum longitudinal, lateral,
and vertical expansion of the ROI. All points that fulfill the ellipsoid equation lie within

the ROLI:
2 yz 22
+ +5—< 1}. (15)

2 2
Xmax Ymax max

X

PROI = {(x/ Y, Z) € Pnon ground

All other points lie outside this area and are not used for further processing of the point
cloud. In addition, ego reflections are filtered out. These occur, for example, since parts of
the vehicle’s own roof are illuminated by the lidar.

2.2.3. Downsampling

The original point cloud captured by the lidar contains over 65,000 points. Following
the filtering of dynamic objects (Section 2.1.2), the ground segmentation (Section 2.2.1), and
the consideration of the ROI (Section 2.2.2), the point cloud still consists of more points (in
most of the cases we examined = 10,000 points) than are later required for extracting the
motion. This number of points contains multiple redundancies of the vehicle’s ego motion,
cf. Equations (26) and (27). To reduce this redundancy and also the complexity, the point
cloud is therefore downsampled. For this purpose, an index-based selection of the points is
performed, in which the sequence of points in Pro; = {p1,p2, ..., pn} is reduced evenly.
This down-sampling results in a subset Py;,,; C Proj, which contains only every k-th triple
pi = (x4,Yi,z;) from the point cloud Pro;:

Pginal = {pl S PROI|i mod k = 1}. (16)

The order of p; is determined by the sequential, line-by-line scanning process of the lidar
sensor. The lines, stacked vertically, collectively form the point cloud representing the entire
environment. In our investigations, k = 4 has proven to be a suitable reduction factor.
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2.3. Motion Extraction from Perception Sensors

In this section, the basic mathematical relationships are derived that describe how
information about the vehicle motion can be extracted from the perception sensors. There-
fore, the relative kinematic relationships between the vehicle’s environment and its ego
motion are first described. Based on these findings, it is explained how the optical flow of
camera images (Section 2.3.2) and the scene flow of lidar point clouds (Section 2.3.3) can be
used for this purpose. The subsequent recurrent neural network (RNN) fuses the extracted
motion information together with the IMU/GNSS system (Section 2.4) and represents the
actual state estimator.

Understanding the relationships that the RNN is supposed to learn is the basic re-
quirement for meaningful (structural) network design and for avoiding a complete black
box view.

2.3.1. Relative Kinematics of the Vehicle Environment and Its Dynamics

Two of the most important quantities for describing driving dynamics are the vehicle
sideslip angle B¢ and the vehicle velocity v°, which are defined in a vehicle-fixed coordinate
system (-)° (see Figure 8). The estimation of these quantities is the goal of the approach
presented in this paper.

A y9 Object
target point o
g

Yobj

Ye

g g
X¢ x

Figure 8. Overview of the relative kinematic relationships between the vehicle environment, i.e., the
object, and the vehicle itself.

The vehicle velocity is the magnitude of the velocity vector located at the center of

gravity (CoG):
0f = [v§? + 052, (17)

whereby the components v} and v;, represent the longitudinal and lateral velocities. The
vehicle sideslip angle 3¢ describes the angle between the longitudinal vehicle axis x¢ and
the velocity vector v¢, that is, the angle between the longitudinal and lateral velocity:

c __ -1 U;
B¢ = tan (05}) (18)

The longitudinal vehicle axis x¢ is rotated by the yaw angle 1 in the geodetic coordinate
system (see Figure 8).
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An object surrounding the vehicle is described by the Target Point or. The direct
connection between the vehicle’s CoG and the object is called the line of sight. This line
is oriented around the so-called look angle A{ to the vehicle longitudinal axis. The length
of the line of sight is the distance from the object to the vehicle R¢. This distance can be
divided into its longitudinal and lateral components in the vehicle-fixed coordinate system
Ax® and Ay°. Here, we assume a planar perspective, disregarding any contributions from
the z-component.

Note: This representation assumes that the sensor coordinate system is identical to
the vehicle coordinate system. In practice, the sensors are not located at the position like
the CoG, which is why the motion extracted from them must be transformed into the CoG
using appropriate algorithms.

The following relationships are described in the geodetic coordinate system, as this
inertial frame offers significant advantages for analysis. In particular, its non-rotating nature
simplifies the computation of time derivatives and enhances the clarity and interpretability
of the principles. Accordingly, the longitudinal and lateral distances, Ax® and Ay® are
transformed into the geodetic coordinate system using the direction cosine matrix C5 and
the vehicle yaw angle ¢°:

Ax8 cos(ypc) —sin(¢°)| |AxE
= : . (19)
ays| T [sin(ye) cos(y) | Ay
=ct
Based on the geometric relationships, the following applies to the look angle:
_1 [ Ay?
AS = tan™! (Azg) — ¢ (20)
For the look angle rate, we obtain (the derivation is provided in Appendix A):
e vt c c \C
/\z:ﬁsm()\z—ﬁ ) — ¢~ (21)

Instead of the geometric derivation for )\;, an algebraic relation by differentiation of

Equation (20) leads to:

¢ AXSAYS — AySAXS .
= — Y- 22

A oy Y 22

For the distance between the vehicle and the object, the following applies:

R® = \/Ax8? + Ays?. (23)

The approach velocity can be expressed geometrically as (the derivation is provided in
Appendix A)
R = —v° - cos(A — B°), (24)

or algebraically by differentiating Equation (23) with respect to time

0 AxSAXS + AyS Ay$

\/Ax8? + Ays?

(25)
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The geometric and algebraic Expressions (21)—(25) can now be transformed into the follow-
ing two relationships using the look angle from Equation (20):

Ay AxSAXE + AySAYE
—vcos (’can1 (Azg> —¢° — ,BC> =7 I—;‘f L iy (26)
o (A8 oo\ AxSAYS — AySAxS
L ) g — = . 27
ReSin (tan (Axg) Y- —pB AxS2 1 AyS2 (27)

These two equations contain, in addition to the states v° and ¢, only quantities that
can be measured with the help of perception sensors (for the exact calculation steps, see
Sections 2.3.2 and 2.3.3). The required quantities are summarized for each sensor type in
Table 2.

Table 2. Overview of the quantities required by the perception sensors to estimate the vehicle sideslip
angle B¢ and the vehicle velocity v¢ in order to meet the underlying relative kinematic relationships.

Description

Variable Camera Image (Mono) Lidar Point Cloud

Distance between vehicle
and object

Must be determined by

RC
depth estimation

Measured directly

Longitudinal and lateral

Determined using the object’s
pixel coordinates and the

8 8 i
distance vehicle to object AxE, By estimated depth Measured directly
(see Section 2.3.2)
Change of position of object : - Related to the optical flow of ~ Scene flow—the 3D analog of
. . Ax8 , Ayg
relative to vehicle

an object point the optical flow

In addition, the yaw angle ¢ from the vehicle IMU (GNSS-aided) is required.

There are two Equations (26) and (27) and two unknowns (the vehicle states v° and ¢
that are being estimated). These two equations apply to each individual object point. This
means that for n,,; > 2 object points detected by the perception sensors, there is an over-
determined, nonlinear system of equations of dimension 2 X n,;. In principle, this system
of equations could be solved using classical methods such as nonlinear least squares.

However, there are good reasons to learn the relative kinematic relationship between
Equations (26) and (27) using a data-based approach, i.e., by using an artificial neural net-
work. In fact, the variables required for the equations in Table 2 are, with the exception of
the lidar distance and lidar position, only estimated quantities (see Sections 2.3.2 and 2.3.3).
As a result, the variables contain uncertainties and noise, which should not be underesti-
mated depending on the scenario. By definition, environmental conditions and associated
uncertainties heavily influence the measurements of the perception sensors (exposure con-
ditions like rain, snow, etc.). A learning-based approach demonstrates robust capabilities
in handling noisy and uncertain data, enabling the reliable recognition of patterns and rela-
tionships within disturbed datasets and facilitating precise predictions and solutions [33].
Therefore, in our work, data from the perception sensor is used in a data-driven approach,
specifically a recurrent neural network (RNN), to learn the relationships between the sensor
readings and the desired vehicle states (see Section 2.4).

The analysis of the relative kinematic relationships between the vehicle sideslip angle
B¢ and the vehicle velocity v° are represented in Equations (26) and (27), as well as in
the quantities required from the perception sensors (Table 2). Based on these findings,
the choice of the input variables of the RNN can be determined. The calculation of these
quantities, which need to be extracted or estimated from the perception sensors, is described
in the following two sections.
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2.3.2. Motion Extraction from Camera Image Using Optical Flow

The camera records mono images of the area in front of the vehicle. The required
quantities (listed in Table 2) must now be calculated from these mono images in order to
obtain the information about the vehicle sideslip angle and the vehicle velocity.

Calculating Sparse Optical Flow

The relative positional change from the object to the vehicle in the image Axe, Aj/c can
be represented by the optical flow. It describes the motion of image points (x$,4/"8) in
an image sequence, which results from the relative motion between the camera and the
scene. The image coordinates (x$,4/"8) are discrete pixel positions within a 2D image
matrix. These image coordinates are related to the 3D world points (Ax¢, Ay, Az¢) by the
so-called camera projection matrix [34]. This transformation includes both the intrinsic
camera properties (focal length and optical center) and extrinsic parameters (position and
orientation of the camera with respect to the world coordinate system). Assuming that a
pixel remains constant in brightness or intensity I during a time step At and a motion of
Ax™8, Ay™S, the following equation [35] results:

I (ximg + Ax'™8, yms 4 Ayimg, t+ At) =1 (ximg, yms, t). (28)

For small movements or small time steps, Equation (28) can be approximated using a
first-order Taylor expansion [35]:

al J-Cimg ol - img ﬂ_
9x M8 ayms? o T

0, (29)

)

where " and yim represent components of the optical flow in the longitudinal and lateral

directions. Equation (29), which is referred to as the optical flow equation, contains the two

unknowns "¢ and "8

and is therefore underdetermined. With additional assumptions,
such as smoothness of the flow field, this equation can be solved, and the optical flow can
be determined [36]. For an image represented by an intensity matrix I(x""8,"™¢, t), the
optical flow field can be described as a vector field:

Mg (L img . img
X0 (xS, y ,t)}/ (30)

y g (xzmg’ yims, t)

where each pixel x™8, ™8 € I is associated with an optical flow vector.

Optical flow can be categorized into two types—dense and sparse—based on the
image points for which the flow is computed.

In dense optical flow, the motion vectors are determined for each pixel in the image.
A widely used method for its calculation is the Farneback algorithm [37]. Dense optical
flow provides a complete representation of the motion, but is relatively computationally
intensive and has problems calculating homogeneous image areas (i.e., regions with little or
no texture or intensity variation) [38]. In contrast, the sparse optical flow only calculates the
motion vectors for selected image points. Points with interesting image features, such as
corners or edges, are used here, which can be well tracked within an image sequence [39]. A
common algorithm for calculating the sparse optical flow is the Lucas-Kanade method [39].

Both approaches were examined in the context of the vehicle state estimator framework
presented here. Figure 9 shows the comparison between the sparse and dense optical
flow. While the flow vectors are clearly visible in the sparse case, the dense variant is
represented by a converted RGB image: the color represents the direction of the flow vector,
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the brightness indicates the length of the flow vector (the brighter a pixel, the greater
its displacement).

Figure 9. Comparison between the sparse (left) and the dense optical flow (right).

For dense optical flow, a Full HD image resolution with 1920 x 1080 pixels results in a
total of >4 million flow vectors (each pixel has a longitudinal and a lateral flow component).
Due to the required data handling, this number entails a considerable computational effort.

Furthermore, the question arises regarding the necessity of this high number of flow
vectors when applying this method to vehicle state estimation. In fact, there is an extreme
redundancy, and the subsequent extraction of the vehicle states causes enormous problems.
The RNN, which has fully connected layers, thus acquires an extremely complex structure
and is, in many cases, no longer capable of generalization.

Our investigations have shown that flow vectors of only 20 image points are sufficient
to extract the driving states.

Note: According to Equations (26) and (27), just two image points are theoretically
sufficient to solve the underlying system of equations for the vehicle states. In practice,
however, more points should be used to better account for measurement uncertainties and
sensor noise.

To realize a processing chain that is as efficient as possible without a loss of per-
formance, the sparse optical flow is used for the vehicle state estimation framework.
The Lucas-Kanade method [39], which is implemented in OpenCV [40], is exploited for
this purpose.

Depth Estimation from Mono Camera Image

As explained in Section 2.3.1, the distance from an object to a sensor R€ is also required
to reconstruct the vehicle states from the camera image. This necessity is also intuitively
clear, since the optical flow of faraway objects is significantly lower than that of nearby
objects and must therefore be taken into account accordingly. In the case of a mono camera
image, the depth information is not available, unlike in the case of a stereo camera image,
and must therefore be approximated.

To estimate the depth, we use the open-source model Monocular Depth Estimation
via Scale (MiDaS) [41], which was developed by Intel Labs. MiDaS uses artificial neural
networks to estimate the relative depth for each pixel from a single RGB image. The algo-
rithm is provided in different model variants that allow a trade-off between computational
effort and accuracy.

Figure 10 shows an example depth image, on which the DLR research vehicle Al
For Mobility (AFM) [42] can be seen (see Section 3.1). Light areas represent close objects,
whereas dark areas correspond to objects that are located further away from the camera.
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Figure 10. Depth image of the AFM research vehicle generated by MiDaS. Light areas represent
nearby objects, dark ones represent more distant objects.

MiDaS estimates the relative distances between the pixels in a scene, which means that
the depth values are not absolute metric distances. This relative depth d,,; is proportional
to the actual depth and is displaced by b. With two known reference points in the image
(e.g., the vehicle hood, c.f. Figure 9), the scaling factor k and b can be determined, thus
enabling the calculation of the absolute depth [41]:

1

RMiDaS = m (31)

Determining Relative Distances to an Object

To reconstruct the vehicle states, the final quantities required from a camera image are
the longitudinal and lateral distances from the camera to the objects Ax®, Ay as explained
in Section 2.3.1. The challenge here again lies in the fact that only a mono image is available
from the camera. However, with the previously estimated depth information, it is now
possible to calculate the object distances required. With the help of the intrinsic camera
parameters, the position of a recorded object can be reconstructed in a three-dimensional
coordinate system. The image coordinates x"8 (longitudinal) and y"¢ (lateral) are related
to the world coordinates (Ax¢, Ay, Az°) by the so-called collinearity equation [43] and the
relative geometry considering the distance Rf;p,g from Equation (31):

Ay = RS YTy A = /RS, 2 — Ay 32
Y = KXMiDas 7 , BXT = MiDaS Y, (32)

where f is the focal length and ¢y, is the principal point of the camera (intrinsic parameters).
It should be pointed out that the depth estimation by MiDaS is inherently uncertain,
particularly for distant points or textureless surfaces. Although uncertainties influence
the overall accuracy of the system, the RNN is capable of tackling this issue through the
integration of potentially unreliable depth information with other motion data.

2.3.3. Motion Extraction from Lidar Point Clouds Using Scene Flow

The point clouds recorded by the lidar sensor have already been preprocessed as
described in Section 2.2. This includes eliminating dynamic objects using Complex YOLO,
removing the ground using ground segmentation, retaining points inside the ROI, and
uniform down-sampling.
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For each frame at time ¢, this preprocessing is performed, resulting in point clouds
Pinary © R3 with the respective individual points p; = (x;,y;,z;) (see Section 2.2.3). In
order to reconstruct the two vehicle states of interest, the relative kinematic information
summarized in Table 2 must be extracted based on these point clouds.

The distance between the sensor and the object point i can be calculated directly using

iidar,i = \V xl2 + yzz + le' (33)

The longitudinal and lateral distance between the sensor and the object point i is measured

the Euclidean distance:

directly and does not require any conversion:
AxC = x;, Ay =y;. (34)

The change in object position relative to the vehicle Ax¢, Ay‘ is the so-called scene flow—the
3D analog to the optical flow used in image data. A scene flow describes a change in motion
of points between two consecutive point clouds. Formally, a scene flow is a vector field
Fsr € R¥N, which associates a motion f; € Fsr with each point p; € Pfinq + from the point
cloud Pfiyar s = {p1, Py, - - -, Py }- Itholds p; + f; = p;, where p} € Pfiyq1441 is a point of the
subsequent point cloud [44]. A visualization of the scene flow is shown in Figure 11.

Scene Flow Fgg

Ps . /
final,t Scene Flow ‘/:. SR
Estimation ..f.f.

Figure 11. Visualization of a scene flow, which describes a 3-dimensional motion of the points
between two consecutive point clouds.

The vector field Fsr can be formulated as an optimization problem as a sum over the
N points of the point cloud [44]:

N
min)_ ||(p; + ) — Pl (35)
SFi=1

Widely used methods for calculating a scene flow are learning-free algorithms based
on the Iterative Closest Point (ICP) [45]. ICP tries to find corresponding points between
two point clouds. However, due to the sparse sampling of the lidar scans or highly
dynamic scene changes, as they occur in driving dynamics estimation, these directly corre-
sponding points do not always exist. At this point, ICP methods reach their limits, while
learning-based methods, which are able to map even complex motion patterns, offer clear
advantages [46]. Our investigations based on a large number of environment recordings,
including highly dynamic driving maneuvers, have confirmed the insufficient performance
of ICP methods. Instead, we have decided to use the learning-based framework FLOT
(Scene Flow on Point Clouds guided by Optimal Transport) [47], which is available as
open source code. In FLOT, the deeper features are first extracted from two point clouds
using CNNs, before the best matching correspondences are calculated based on optimal
transport methods.

The scene flow calculated with FLOT for two lidar frames recorded during one of our
test drives is shown in Figure 12. The visualization also helps to check the plausibility: if
the scene flow has been estimated correctly, P; + Fsp; = P;,1 must apply. This means that
the red dots shown in Figure 12 must match the green dots as closely as possible, which
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is the case. For the purpose of a better visualization of the scene flow, dynamic objects
(vehicles and persons) were not filtered out.

road sign

person

¢ ¥ .-\_c\...l. & ...'
oL A

Figure 12. Visualization of a scene flow with oncoming traffic and various objects passing by. For
plausibility checking, red dots (predictions) should match the green dots (ground truth).

2.4. State Estimation Using Recurrent Neural Networks

After all relevant quantities for estimating the desired vehicle states have been ex-
tracted from the perception sensors, they must be fused using an algorithm for state
estimation. The advantages and drawbacks of learning- and model-based methods have
already been discussed in Section 2.3.1.

Given the complexity of the perception sensor data and the extracted features
(Sections 2.1-2.3) as well as the uncertainties and disturbances caused by the numerous
necessary preprocessing steps, a learning-based method is used. For dynamic systems,
recurrent neural networks (RNNs) have proven to be a powerful technique [48].

A nonlinear dynamic system is described by the temporal development of the state
vector x; € R™:

Xk = k-1 (-1, 11),
Y = h(xx), (36)
Xy € R”Xl,uk c R5X1,yk c Rmx1

The goal of state estimation is to approximate the state vector & based on the observa-
tions y, as well as possible.

One of the most important features of RNNs is their ability to model temporal depen-
dencies using a hidden state s, which acts as a memory and incorporates information from
previous time steps. This allows an RNN to map the dynamics from Equation (36) with [49]

sk = P(Sk—1,Yy), (37)
X = v(sk),

where the nonlinear functions ¢(-) and -(-) are learned during the RNN training. An
RNN can be considered a universal approximator for optimal filters such as the Kalman
filter [49,50]. They offer a flexible data-based alternative for effective approximation of
complex and nonlinear systems. It can be concluded that RNNs can be used not only in the
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context of state estimation, but also have a remarkable variety of applications and suitable
architectures. Further information and detailed background can be found, for example,
in [51].

3. Data Acquisition in Real-World Driving Tests

This chapter describes data collection with a test vehicle in real driving tests in order
to train and analyze the framework presented in Section 2.

First, the test vehicle and the relevant hardware setup are presented, including the
mounting of the perception sensors. Subsequently, the driving maneuvers performed
are described, which represent the basis of the data acquisition and are used for both
training and analysis of the estimator framework. Another focus of this chapter lies on
the processing of the data recorded during the tests. Data synchronization plays a central
role here, since the data is recorded at different sampling rates and processed on different
systems. Finally, the minimum requirements for the state estimator’s sampling rate are
discussed in the context of the considered vehicle dynamics problem.

3.1. Test Vehicle Al for Mobility and Its Hardware Setup

The test vehicle Al For Mobility (AFM) is being designed by the Department of
Vehicle System Dynamics and Control at the DLR to research Al-based vehicle control
methods [42,52]. It is equipped with a complete drive-by-wire (DBW) system enabling the
reproducible execution of automated driving maneuvers. To fulfill the requirements of
data-driven methods for learning data, the vehicle is equipped with a variety of sensors.
These include perception sensors as well as systems recording internal vehicle parameters
and important vehicle dynamics quantities. The perception sensors relevant for this work
include a stereo camera and a lidar sensor. However, it should be noted that the framework
presented here is designed for broader applicability; therefore, only a monocular image of
the stereo camera is used. The second image of the stereo camera remains unused. While
the camera provides a field of view of the vehicle’s front area, the lidar enables coverage
of the entire area around the vehicle thanks to its 360° detection range. Both sensors are

installed on a sensor carrier on the front part of the vehicle roof (see Figure 13).

Figure 13. The test vehicle AI For Mobility (AFM) and its sensor carrier with Lidar and stereo camera.

In addition to the perception sensors, precise measurement of the vehicle sideslip angle
and vehicle velocity as a ground-truth measurement plays a central role. These measure-
ments are provided by a high-precision navigation platform fusing inertial measurement
unit (IMU) and GNSS data. Accuracy is further improved by considering real-time cor-
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rection data via Real Time Kinematic (RTK). In addition, an optical system to measure
the vehicle side-slip angle is used, which provides reliable data even in scenarios without
GNSS availability. These sensors measure the vehicle sideslip angle 8¢ and vehicle velocity
v° with high accuracy. However, due to their high cost, they are typically used only in
research vehicles such as the AFM, and not in series-production vehicles. Consequently,
state estimators are required for practical applications. In this study, these sensors provide
ground truth values for both training the RNN (supervised learning) and evaluating the
performance of the vehicle state estimators.

The hardware setup of the test vehicle comprises two central systems: an embed-
ded computer with a high-performance GPU (NVIDIA Ampere GPU with 2048 CUDA and
64 Tensor cores, CPU: 12-core ARM Cortex-A78AE, RAM: 64 GB, up to 275 TOPS Al performance
(NVIDIA (Santa Clara, CA, USA); ARM Ltd. (Cambridge, UK))) and a rapid control proto-
typing (RCP) system. The embedded computer is used to record and process perception
sensor data, while the vehicle controllers and the software for controlling the DBW system
run on the RCP system. In addition, all vehicle-internal and driving dynamics quantities
are logged in here. Both systems are connected to each other, enabling the synchronization
of the sensor data (see Section 3.3.1). A detailed description of the hardware setup can be
found in [42].

Regarding the preprocessing of sensor data, no action was taken except for the
extraction of motion information from the perception sensors, specifically optical flow
and depth information from camera images and scene flow from lidar point clouds (see
Sections 2.1-2.3). To ensure data quality and consistency, the recorded data from the vari-
ous sensors were subjected to random plausibility checks using simple transformations.
Overall, the sensors provided reliable and consistent data.

3.2. Overview of the Driving Maneuvers

The test drives performed with the test vehicle AFM were mainly carried out on
German country roads. During these test drives, data was recorded over a distance of more
than 80 km and a duration of over 70 min. The focus of the test drives was on sections with
relevant lateral dynamics, since the vehicle dynamics estimator was developed specifically
for these areas. Particularly curvy sections, such as serpentine roads, provided ideal
conditions for the application and validation of the estimator. To provide a challenging
data basis, the maneuvers were performed to cover nonlinear driving dynamics regions.
This included lateral accelerations of around a; ~ 8 m/s?, well above the linear range of
ay >4m/ s?. Despite the focus on challenging driving scenarios, we made sure to create a
representative data set. Therefore, fewer lateral-dynamic-relevant road sections, such as
straight roads or long curves, were also included in the tests. This allowed us to cover all
relevant areas of driving dynamics and ensure a comprehensive basis for the evaluation.

3.3. Data Synchronization and Analysis

As mentioned before, the sensor data is recorded on different systems and must be
preprocessed before sensor fusion. The essential steps comprise time synchronization as
well as analysis of the minimum required sampling times to operate the estimator in an
error-free way in accordance with the Nyquist-Shannon sampling theorem.

3.3.1. Data Synchronization

For the state estimator (RNN), all sensor data must be synchronized in time to fuse the
input data (perception sensor data and yaw rate) with the output values (vehicle sideslip
angle and velocity). This poses challenges due to the different sample rates: Lidar operates
at 20 Hz (250 ms), the camera at 30 Hz (£ 33.3 ms), and the RCP system at 1 kHz (£1 ms).
While a simple interpolation between measurements is applicable for continuous signals
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such as acceleration data, the synchronization of perception sensor data is more complex
due to its structure. To ensure synchronous sensor signal processing, the sample rate of the
state estimator framework is determined by the slowest sensor—in this case, the Lidar at
20 Hz. To synchronize to this rate, a method called “gating” is used. This involves opening
a time gate each time a new point cloud is transmitted by the lidar sensor (every 50 ms).
The nearest camera images and vehicle dynamics variables in time are then passed through
this gate. Due to the high sampling rate of the RCP system (1 kHz), the logged vehicle
dynamics parameters and lidar measurements are almost perfectly synchronized with a
maximum error of 1 ms. In the worst case, the camera images are subject to a delay of up to
one period (33.3 ms). However, this maximum delay is considered acceptable, since delays
are usually shorter in practice. The method described is similar to the “Approximate Time
Synchronizer” [53] as implemented in the ROS.

3.3.2. Analysis of the Required Sampling Times

After the time synchronization, the sensor data is available at a sampling rate of 20 Hz,
corresponding to an interval of 50 ms. It is necessary to investigate whether the state
estimator, in this case an RNN, can reliably estimate the vehicle sideslip angle and the
vehicle velocity at this sampling rate without violating the Nyquist-Shannon sampling
theorem. Therefore, the underlying dynamics must be examined. This corresponds to the
lateral dynamics (vehicle sideslip angle) and the longitudinal dynamics (vehicle velocity).
Since the vehicle lateral dynamics is considerably faster than its longitudinal dynamics,
it is sufficient to consider the further estimation in relation to the lateral dynamics. A
common model for describing vehicle lateral dynamics is the linear single-track model
(STM). In state space representation, the vehicle sideslip angle and the vehicle yaw rate can
be described as [54]

. crtor cr lrfcf lf 1 c cf c
C — c 2 - C rc 5
m =lontgy  GBar |l T4 m’l | M' o
Iz Iz v° JE Jz r

=A

where ¢y, represents the cornering stiffnesses at the front and rear axles, I, describes the
distances to the CoG, 6y, denotes the steering angles at the front and rear wheel, and m
and J, correspond to the vehicle mass and the yaw inertia, respectively. The eigenvalues
Astm of the dynamics matrix A parameterized for the AFM result in the values shown in
Figure 14 as a function of the vehicle velocity.

The real part of the eigenvalues decreases with an increasing vehicle velocity, i.e., the
system dynamics slow down. Via

_ [Re{Arstmi|

27 (39)

fstm

the real parts of the eigenvalues are related to the eigenfrequency of the respective system
state. Based on this, the following estimation is made. For vehicle velocities v° > 5 &,
eigenvalues of [Re{Arsar}| < 60 result, which correspond to fsrp < 9.5 Hz. The Nyquist—
Shannon sampling theorem requires

fEstimutor >2- fSystem maxs (40)

where fEstimator = 20 Hz and fSystem max = fstm = 9.5 Hz.
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Figure 14. Vehicle velocity-dependent variation of the eigenvalues of the AFM single-track model.

The Nyquist-Shannon sampling theorem is therefore also fulfilled for vehicle velocities
v° > 5 7 (18 km/h) with the sensor signals downsampled to 20 Hz. This represents an
acceptable limitation for the vehicle state estimator, since its scope of application lies in
challenging driving maneuvers in the higher speed range.

4. Implementation and Evaluation

This chapter first presents the setup of the Al-based state estimator. This includes an
overview of the RNN architecture, details regarding its structure and parameters, as well
as information on its training. The Al-based estimator is compared to proven model-based
state estimators, namely a Luenberger Observer and an Unscented Kalman Filter. Their
setup is presented in Section 4.1.2. Next, we present a test scenario with a challenging and
curvy mountain road that also includes a synthetic segment of an icy surface with a very
low tire-road friction. The chapter concludes with the results achieved by the Al-based
state estimator compared to those delivered by the model-based benchmark approaches.

4.1. State Estimator Setups
4.1.1. Al-Based Vehicle State Estimator

The Al-based estimator is implemented using an RNN (see Section 2.4). In
Section 2.3.1, the relative kinematic relationships between the ego vehicle and its envi-
ronment are analyzed to determine the variables required from the camera and lidar
sensors for estimating the vehicle sideslip angle and velocity. These variables are summa-
rized in Table 2. The key inputs include motion information extracted from the camera
images: optical flow in the longitudinal and lateral directions For » and For,y, respectively,
along with the distance to flow objects R ;s and their associated longitudinal and lateral
distances A(x,y) o = (AxSp, AySy). From the lidar sensor, inputs include the scene flow
in all three spatial directions Fsg,y, Fsr, and Fsr, derived from lidar point clouds, as
well as object distance R{;,,. and the corresponding longitudinal and lateral distances
A(x,y)sp = (Ax§p, AySy). Additionally, the vehicle yaw angle 3© measured by the IMU
(GNSS-aided) is used as an input variable.

As described in Section 2.3, not all object points from the camera and lidar need to be
used as input variables due to significant redundancy. Instead, 20 image points are selected
from the camera, each containing the extracted motion information, and 50 object points
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are chosen from the lidar sensor. With a sequence length of 5 time steps, this results in an
input layer dimension of R41*5. The RNN was trained using the Adam optimizer [55],
which has proven effective for deep learning tasks. Gated Recurrent Units (GRUs) emerged
as the optimal architecture for this application. An overview of the RNN architecture is

provided in Figure 15.

Input Layer € R*01%5 GRU Layer Output Layer € R?*®
IMU { Pe
IS ]RIXS
Fopx Estimated vehicle
Camera Fogy

e R( 20%5 RSjipas S XN
v“vevv = GRU 2
A Y5 <S5 f'f.//

§‘7 GRU 1 side-slip angle
e ‘

F
SF.x Estimated vehicle
F SFy
Lidar //
€ R(6:50)%5 FSF,z
Riidar :
A(X,¥)sp

Figure 15. Overview of the architecture of the RNN, which is used as a state estimator for the vehicle
side-slip angle and vehicle velocity based on IMU, camera, and lidar data.

The RNN was implemented in Python using the deep learning libraries Keras [56]
and TensorFlow [57]. Training was conducted using the vehicle dynamics data de-
scribed in Section 3. The dataset was partitioned into three disjoint subsets: training
set Dypain, validation set D, and test set Dyest, with a distribution ratio of |Dyin| : | Doat|
| Dtest |, = 0.7:0.2:0.1. Details regarding the test data are provided in Section 4.2.

To determine the best hyperparameters and network configuration, a comprehensive
grid search was performed. The optimal parameters identified through this process are
summarized in Table 3.

Table 3. Summary of the optimal hyperparameters of the RNN determined by the grid search

procedure.
Hidden Sequence . Learning
Parameter RNN Type Layers Length GRU Units Dropout Rate Rate
Feedforward Recurrent
Value GRU 1 5 32 0.5 0.3 0.001

Additional parameters related to the architecture of the RNN network are presented
in Table 4.

Table 4. Summary of the non-optimized parameters of the RNN network architecture and information

about the training.

Parameter Activation Function Loss Function Batch Size Volume of Training Data

State Gate Output Time Distance

Value tanh sigmoid linear Mean Squared Error 60 65 min 80 km
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Thanks to the pre-computation of numerous variables from the perception sensor
data, particularly the optical flow and scene flow, the network architecture is relatively
lightweight. This design enables efficient and rapid training. On a high-performance
personal computer (CPU: Intel Core i9-13950HX, GPU: NVIDIA RTX3500 Ada, RAM: 64 GB,
Keras/TensorFlow Version 2.11.x (Intel (Santa Clara, CA, USA); NVIDIA (Santa Clara, CA,
USA); Samsung Electronics Co., Ltd. (Suwon, Republic of Korea))), an average training session
can be completed in under 60 min. The grid search optimization used to identify the
optimal RNN architecture and parameterization was conducted on a dedicated in-house
high-performance computing cluster.

Training was performed over a maximum of 500 epochs, employing early stopping
mechanisms to prevent overfitting. Given the large size of the dataset, data generators
were utilized during training to load data incrementally in batches, thereby reducing
memory usage and ensuring efficient processing. Prior to the training, the input data was
standardized using z-score normalization, scaling it to a mean of 0 and a standard deviation
of 1.

4.1.2. Model-Based Benchmark Estimators

To evaluate the performance of the Al-based vehicle state estimator, the results ob-
tained are compared with those delivered by two model-based benchmark approaches.

Unscented Kalman Filter based on a nonlinear two-track model

The Unscented Kalman Filter (UKF) algorithm is widely regarded as one of the most ad-
vanced state estimation techniques for nonlinear systems within model-based approaches.
In this work, a nonlinear two-track vehicle model parameterized for the AFM research
vehicle serves as the prediction model. For tire modeling, a slightly simplified version
of Pacejka’s Magic Formula 5.2 is used. The vehicle model is implemented in Modelica
and integrated into an in-house-developed Kalman filter environment in MATLAB via the
Functional Mock-up Interface (FMI) standard [58].

The UKF parameters are optimized within an optimization-based framework to ensure
robust performance. Detailed descriptions of the vehicle model, Kalman filter environment,
and parameterization methodologies are available in prior publications [59-61]. The UKF
estimates three key states: the vehicle sideslip angle B¢, the vehicle velocity v* and the

-C
vehicle yaw rate ¢ represented as:
.c 1T
xukr = [BS 0° ¢ } . (41)

The measurement vector includes the vehicle velocity v¢, longitudinal acceleration

-C
aC, lateral acceleration a? , and vehicle yaw rate ¢ obtained from an inertial measurement
unit (IMU):
.c 1T
ZUKF = {Uc ) } .

v (42)

The input vector of the nonlinear two-track model comprises the wheel speeds
Wneets € R* and the front axle steering angles Jyypee1s € R2:

T
UUKF = [wWheels 5wheels] . (43)

In summary, this approach combines the well-established UKF algorithm for nonlinear
systems with a high-fidelity nonlinear two-track model, resulting in a highly accurate yet
computationally demanding vehicle state estimator.

Luenberger Observer based on a linear single-track model
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In contrast to the previously described advanced approach utilizing a UKF combined
with a nonlinear two-track model, a simpler Luenberger observer is employed based on
a linear single-track model. This straightforward setup serves as a benchmark approach,
requiring minimal parameterization effort and offering low computational complexity. It
enables a comprehensive evaluation of the trade-off between model fidelity, computational
effort, and estimation performance.

The linear single-track model used by the observer has been previously introduced in
Section 3.3.2 (see state-space model in Equation (38)). This model estimates two key vehicle
states—the vehicle sideslip angle B¢ and the yaw rate l,bc, represented as:
e } T

XLB Obs = [ﬁc ¥ (44)

The vehicle velocity v° is treated as a parameter within the time-variant system matrix
A and is approximated as a quasi-input variable using the speed of the unsteered wheel
rear left w1 .1 and the wheel radius Ry

ﬁEB Obs — Wwheel 1l * Repheel- (45)

.c
The vehicle yaw rate ¢ is utilized as the observation variable, resulting in an initial

T
output vector ¢ = {0 1} . The observer gain was determined through the pole placement
method, ensuring stable and reliable estimation performance.

4.1.3. Test Scenario

To evaluate the performance of the Al-based vehicle state estimation and compare it
with model-based approaches, a test track, which the recurrent neural network (RNN) had
not previously encountered, was selected. The test dataset comprises approximately 10%
of the total database, and is entirely independent of the training and validation datasets
(see Sections 3.2 and 4.1.1). This ensures that the results reflect the model’s performance on
an unseen route.

The test track is located in the German Alpine foothills and includes a mountain
road featuring diverse road types. It consists of hairpin turns, winding sections, long
curves, and isolated straight segments. The vehicle speeds v° range from 8 m/s to 22 m/s,

while the lateral acceleration magnitude ‘a;‘ reaches up to 8 m/s?. Consequently, the test

scenario includes highly nonlinear regions where ‘a;’ > 4 m/s?. The entire test drive
lasts approximately 6 min. Two specific sections were selected for detailed analysis as
described below.

In test section @, the performance of the state estimators is analyzed under ideal road
conditions. This segment features a dry road with high grip and a friction coefficient of
approximately e roaq ~ 1.

Test section B) examines a critical driving scenario. To simulate low tire-road friction
conditions pjre roaq = 0, some measurement data was synthetically modified to represent a
“zero-grip” surface where no traction exists between the tires and the road. Such conditions
would be extremely hazardous in real-world driving scenarios. In this case, conventional
signals like steering wheel angles and wheel speeds lose their reliability as indicators of
actual vehicle motion. For this synthetic low-friction representation, affected measurements
were adjusted accordingly. To mimic the behavior of ESC under these conditions, simplified
interventions were modeled: wheel speeds were held constant (representing reduced drive
power), and steering angles were fixed at 0°. This simplification isolates vehicle behavior
in critical scenarios without introducing complex vehicle dynamics control mechanisms.
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Figure 16 provides an overview of the driven test track and highlights the two analyzed
sections, @ and ®. Additionally, the corresponding lateral accelerations of the vehicle are
shown to illustrate the dynamic characteristics of each section.

Vehicle LateralAcceleration a§ [m/s?]

O N M O ®
T —

Htire road = 0

200 m

500 ft < Esri. HERE, Garmin, INCREMENT P, L . I !

i <~ USGS, METI/NASA O 20 40 60 80
time [s]

Figure 16. Visualization of the test scenario: the selected sections of the driven route are shown on
a road map (left), alongside the corresponding vehicle lateral accelerations (right). Test section @
features ideal road conditions, while section B) represents with a critical area with low tire-grip.

This test scenario enables a comprehensive evaluation of the vehicle state estimation’s
performance under both normal and extreme driving conditions, providing insights into
its robustness and accuracy.

4.2. Results

This section presents the estimation results of the vehicle sideslip angle 3¢ and vehicle
velocity v in the test scenario described in Section 4.2. AFM, which was previously
introduced in Section 3.1, serves as the test vehicle.

For the Al-based approach, the principal computational burden lies in the prepro-
cessing of sensor data. In contrast, the RNN component is notably efficient, owing to its
architecturally optimized design based on a rigorous analysis of the underlying system
dynamics (see Section 2.3.1). It should be emphasized that model-based approaches achieve
real-time execution at 20 Hz on the AFM’s embedded computing system. Although full
real-time inference with the Al-based method has not yet been validated in this study, the
integration of GPU hardware in the test vehicle suggests that real-time performance is
feasible. This potential will be explored in future investigations.

The Al-based approach that utilizes an RNN is compared with the two model-based
benchmark methods: a UKF and a Luenberger observer. The results are first analyzed for
test section @), characterized by a high tire-road friction coefficient, followed by the more
challenging test section B), which features a low tire—road friction coefficient.

To assess the estimation quality, two error metrics are employed: the root-mean-
squared error (RMSE), which provides a physically interpretable measure of error mag-
nitude, and the fit value [62], which quantifies the percentage agreement between the
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estimated and reference signals. A fit value of 100% represents a perfect match, offering a
straightforward and intuitive interpretation of the estimation accuracy.

4.2.1. High Tire-Road Friction

Figure 17 illustrates the time profiles of the vehicle sideslip angle ¢ and vehicle
velocity v¢ for test section @ characterized by a high friction coefficient between the tires
and the road surface.

Vehicle Sideslip Angle B¢ [°]
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Figure 17. Time profile of the actual vehicle states (reference) as well as the profiles of three vehicle
state estimators for test section @ with a high friction value.

The associated error values for the three approaches are shown in Table 5.

Table 5. Error metrics for each vehicle state estimation approach for test section @ with a high
tire—road friction.

Criteria Fit [%] RMSE
State g€ o€ BEI°] o€ [m/s]
Estimator
RNN (low-pass filtered) 73.7 49.7 0.25 1.19
Unscented Kalman Filter 70.5 97.4 0.28 0.06
Luenberger Observer 58.6 97.1 0.38 0.06

The Luenberger observer, which relies on a linear single-track model and operates
with a minimal sensor setup, significantly underestimates the vehicle sideslip angle 5. This
behavior is expected, as the driving conditions fall within the nonlinear vehicle dynamics
range. The linear single-track model assumes a proportional relationship between tire
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lateral forces and tire slip angles. However, this assumption becomes invalid at lateral
>4m/s?.
In contrast, the UKF provides highly accurate estimates of the vehicle sideslip angle am-

accelerations of ’a;

plitudes. This accuracy stems from the UKF’s foundation on a nonlinear two-track model,
which enables it to capture complex tire saturation effects at the limits of driving dynamics.

The Al-based state estimation approach achieves similar or even slightly better results
compared to the UKE The advantages of the Al approach are particularly pronounced in
highly dynamic driving scenarios.

For the estimation of the vehicle velocity v, both model-based methods (UKF and
Luenberger observer), which use tire speeds as input variables (see Equation (45)), demon-
strate exceptional precision. In comparison, the Al-based approach exhibits relatively noisy
results with sporadic offsets. However, these high-frequency disturbances can be effectively
mitigated by applying a low-pass filter without introducing noticeable time delays. It can
be observed that the Al-based approach yields higher estimation accuracy for the vehicle
sideslip angle compared to vehicle velocity. Notably, in the interval from just before t = 10 s
to just before t = 40 s (see the lower plot in Figure 17), the model predicts a decreasing or
increasing vehicle velocity, whereas the actual value exhibits the inverse trend. Due to the
black-box nature of the RNN, a precise explanation for this behavior remains undetermined.
Nevertheless, it is important to note that such discrepancies manifest only sporadically
within the operational range.

4.2.2. Low Tire-Road Friction

Test section B includes a segment with a low friction coefficient pjy, y009 = 0, Wwhere
no traction exists between the tires and the road surface. Under such conditions, the
tire sensor data can no longer provide reliable information for motion estimation. This
scenario represents a significant challenge for vehicle state estimation, as accurate state
predictions are critical for stabilizing interventions by vehicle dynamics controllers in
potentially hazardous situations.

Figure 18 illustrates the time profiles of the true vehicle states (reference) alongside
the estimates produced by the three approaches for this test section.

The corresponding error values for this test section are summarized in Table 6.

Table 6. Error metrics for the three vehicle state estimation approaches in test section B), subdivided
into segments with a high and a low tire-road friction.

Section High Tire Road Friction Low Tire Road Friction
Criteria Fit [%] RMSE Fit [%] RMSE
State B o€ B I°] o€ [m/s] B¢ o€ BEI°] o€ [m/s]
Estimator
RNN (low-pass filtered) 65.3 71.7 0.33 1.1 49.2 30.1 0.46 1.1
Unscented Kalman Filter 64.4 98.4 0.33 0.1 —200 —56.6 2.92 1.7
Luenberger Observer 55.8 98.3 0.41 0.1 —66.3 —53.2 1.52 1.7

The two model-based approaches (UKF and Luenberger observer) rely on input vari-
ables such as tire speeds and wheel steering angles. In the area without traction, these
inputs become worthless, resulting in implausible estimates, as expected. Although com-
plete divergence is prevented by supplementary data from the IMU, both the magnitudes
and signs of the estimated vehicle sideslip angle 3¢ are incorrect.
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Figure 18. Time profiles of the true vehicle states (reference) and the estimated states from the three
vehicle state estimation approaches for test section ®), including a subsection with a low friction
coefficient where traction between tires and the road is lost.

For vehicle velocity v¢, the model-based approaches maintain a constant estimate
at the last known value. This behavior arises because the intervention of the syntheti-
cally generated vehicle dynamics controller holds wheel speeds constant in this scenario
(see Section 4.2). Consequently, reasonable velocity estimates are not achievable under
these conditions.

In contrast, the Al-based approach using an RNN demonstrates robustness in this
challenging scenario. By leveraging perception sensors, it operates independently of the
unreliable wheel sensor data and continues to provide plausible estimates for both the
vehicle sideslip angle and velocity. Although the velocity estimates exhibit relatively high-
frequency noise, it can be effectively reduced through low-pass filtering without significant
time delays.

Note that the estimation accuracy of the vehicle sideslip angle is lower in this case
compared to the previous section, where a high friction coefficient was assumed. This effect
is incorporated in the error values presented in Table 6. It should, however, be emphasized
that this decrease in accuracy does not stem from the change in the tire-road friction
and is rather related to the challenging conditions in this section. Here, both lateral and
longitudinal dynamics undergo rapid changes, as evidenced by the oscillatory behavior of
the vehicle sideslip angle and vehicle velocity shown in Figure 18.

4.2.3. Results Overview

The Al-based vehicle state estimator utilizing a recurrent neural network (RNN) and
perception sensors delivers comparable or even slightly superior estimates of the vehicle
sideslip angle in high-friction conditions compared to the high-performance benchmark
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approach—UKF paired with a nonlinear two-track model and conventional sensors. Fur-
thermore, the Al estimator performs exceptionally well in nonlinear driving dynamics
regions, where the linear Luenberger observer significantly underestimates the vehicle
sideslip angle.

In low-friction conditions, where the tires lose their traction potential, the model-based
approaches fail entirely. They are unable to produce plausible estimates for either the
vehicle sideslip angle or vehicle velocity. In contrast, the Al-based estimator remains robust
under these challenging circumstances. By leveraging perception sensors, it bypasses
reliance on the dynamic system of tires and their sensor data, enabling reliable state
estimation across diverse scenarios.

A drawback of the Al estimator becomes apparent in vehicle velocity estimation. The
results exhibit noise components, but these can be effectively mitigated by applying a
low-pass filter without introducing significant delays.

In summary, the Al-based approach, which leverages environmental sensor data,
demonstrates clear advantages over the two model-based methods, particularly in critical
scenarios involving low tire-road friction coefficients. Its robustness and independence
from tire sensor data make it a promising solution for reliable vehicle state estimation under
extreme driving conditions.

5. Summary and Outlook

This work introduces a powerful Al-based framework for vehicle state estimation that
utilizes perception sensors and the vehicle yaw angle. The estimator primarily builds upon
the motion-related data extracted from perception sensors, including the optical flow from
2D camera images and the scene flow from 3D point clouds.

To enhance transparency and optimize the network architecture, the mathematical
relationship between the perception sensor data and vehicle states was derived. The state
estimator is based on a recurrent neural network (RNN) and benchmarked against two
model-based approaches: the Unscented Kalman Filter (UKF), which utilizes a nonlinear
two-track model, and a linear Luenberger observer.

A major advantage of the Al-based estimator lies in its utilization of perception sensors,
enabling it to bypass the complex vehicle and tire model, which is a primary source of
nonlinearities in conventional model-based vehicle state estimation. Tire models are highly
sensitive to external factors such as temperature, tire wear, and road conditions, introducing
significant uncertainties into traditional estimation methods. By leveraging perception
sensors and utilizing relative kinematic relationships, the Al approach overcomes this
source of uncertainty.

The results demonstrate that the Al estimator provides robust and reliable estimates.
Particularly in scenarios with very low friction coefficients between tires and the road
surface, such as icy driving conditions, its advantages over model-based approaches
become evident. In these scenarios, model-based approaches fail due to their dependence
on wheel sensor data and become, therefore, unusable. Additionally, the Al-based approach
offers another significant advantage: its independence from vehicle-specific parameters.
Once trained, the model can be seamlessly transferred to other vehicles without requiring
extensive recalibration.

Future work will focus on integrating additional perception sensors, such as radar,
into the estimation process to further enhance the robustness and accuracy. Moreover,
test scenarios will be extended to include challenging environmental conditions such as
darkness, rain, or snow to evaluate performance under real-world adverse conditions.
Additionally, the dataset will be extended to include other challenging driving maneu-
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vers, such as step-steer inputs and emergency braking, enabling a more comprehensive
evaluation of system robustness.

Full real-time implementation of the entire Al-based estimator toolchain on the ve-
hicle’s onboard computing systems is planned. In this context, particular attention will
be given to assessing the impact of computationally intensive preprocessing steps on the
overall system performance.

To further enhance the estimation quality, the Al-based approach will be integrated
with model-based methods to develop a hybrid estimator that harnesses the respective
benefits of both strategies.
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Appendix A. Supplementary Derivations of the Relative
Kinematics Equations

Geometric Derivation of the Look Angle Rate

This section provides supplementary derivations to Equations (20)—(24) in Section 2.3.1,
based on the geometric relationships illustrated in Figure 8.
The component of the vehicle’s velocity perpendicular to the line of sight (LOS) is
given by
008 = Vsin(A; — °). (Al

The component of the vehicle’s velocity parallel to the line of sight is:
Vjos = v cos(A; — ). (A2)

The line of sight angle c° can be expressed in terms of the vehicle yaw angle ¢° and the
look angle A{ as follows:
o =yP° + AL (A3)

The line of sight rotation rate is determined by the perpendicular velocity component
v 1 0g and the distance to the object R*:

- Z}CLLOS Ad
TSR (A9

By differentiating Equation (A3) with respect to time and rearranging for the look angle
rate, we obtain:
A,=0"—1. (A5)
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Substituting Equation (A4) into Equation (A5), the geometrically derived expression for
the look angle rate is:

- C [ .

A = gesin (AL = ) — . (A6)
Approach Velocity

The approach velocity is defined as the negative rate of change of the distance to the

object R° and can be expressed in terms of the velocity component parallel to the line of
sight (see Equation (A2)):

- C

R = —vj;og = —vcos(A; — B°). (A7)

Appendix B. Technical Data of the Perception Sensors

Property Lidar Sensor Camera

Effective Range 90 m 20m
Vertical Field of View 45° 54°
Horizontal Field of View 360° 84°

65,536 points per scan
Resolution (64 vertical channels, 1920 x 1080 Pixel
1024 points per channel)
Frame Rate 20 Hz 30 Hz
Hardware Interface Ethernet USB Type-C

Appendix C. Lists of Symbols, Nomenclature, and Abbreviations

Formula Symbol Description

a§,y Vehicle’s acceleration (longitudinal or lateral)
B¢ Vehicle’s side slip angle
Owheel Wheel steering angle
A,y Distance between Vehicle and Optical Flow Point
7 J/OF (Longitudinal and Lateral)
Ax8, Ay Distance between Vehicle and Object (Longitudinal and Lateral)
For Optical flow vector (2D)
Fgp Scene flow vector (3D)
1 Image matrix (Pixels)
Y Look Angle between the Horizontal Line and the Line of Sight to
z an Object
M Image Mask (Binary Matrix)
Wtire road Coefficient of friction between tire and road
o Cluster of Points from Point Cloud
Wyoheel Wheel speed
p Individual Point from Pointcloud (3D Vector)
P Point cloud (3D)
Pe Vehicle’s yaw angle
R Distance between Vehicle and Object Point
v° Vehicle’s velocity over ground
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Abbreviation Explanation

ADAS Advanced Driver Assistance Systems

AFM Al For Mobility (DLR research vehicle)

CNN Convolutional neural network

CoG Center of gravity

DLR German Aerospace Center

ESC Electronic Stability Control

GNSS Global Navigation Satellite System

GRU Gated Recurrent Unit

ICP Iterative Closest Point

IMU Inertial measurement unit

LOS Line of sight

MiDa$S Monocular Depth Estimation via Scale

RNN Recurrent neural network

ROI Region of interest

ROS Robot Operating System

STM Single-track model

UKF Unscented Kalman Filter

VDC Vehicle dynamics control

YOLO You Only Look Once

Nomenclature Explanation

()" Quantity expressed in the car coordinate system with origin in CoG
()% Quantity expressed in the geodetic coordinate system
(~)img Quantity expressed in the image coordinate system (pixels)
) Estimated state
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