elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit

Nareddy, Kartheek Kumar Reddy und Ternus, Sarah und Niebling, Julia (2025) Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit. In: Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit. Computer Vision and Pattern Recognition 2025 Workshops, 2025-06-11 - 2025-06-15, Nashville, USA.

[img] PDF
168kB

Kurzfassung

The developments in transformer encoder-decoder architectures have led to significant breakthroughs in machine translation, Automatic Speech Recognition (ASR), and instruction-based chat machines, among other applications. The pre-trained models were trained on vast amounts of generic data over a few epochs (fewer than five in most cases), resulting in their strong generalization capabilities. Nevertheless, the performance of these models does suffer when applied to niche domains like transcribing pilot speech in the cockpit, which involves a lot of specific vocabulary and multilingual conversations. This paper investigates and improves the transcription accuracy of cockpit conversations with Whisper models. We have collected around 85 minutes of cockpit simulator recordings and 130 minutes of interview recordings with pilots and manually labeled them. The speakers are middle aged men speaking both German and English. To improve the accuracy of transcriptions, we propose multiple normalization schemes to refine the transcripts and improve Word Error Rate (WER). We then employ fine-tuning to enhance ASR performance, utilizing performance-efficient fine-tuning with Low-Rank Adaptation (LoRA). Hereby, WER decreased from 68.49 \% (pretrained whisper Large model without normalization baseline) to 26.26\% (finetuned whisper Large model with the proposed normalization scheme).

elib-URL des Eintrags:https://elib.dlr.de/214890/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Nareddy, Kartheek Kumar Reddykartheek.nareddy (at) dlr.dehttps://orcid.org/0000-0003-4586-5158190093526
Ternus, Sarahsarah.ternus (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Niebling, JuliaJulia.Niebling (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Erschienen in:Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Automatic Speech Recognition, Fine-Tuning LLMs, Whisper, Cockpit communications
Veranstaltungstitel:Computer Vision and Pattern Recognition 2025 Workshops
Veranstaltungsort:Nashville, USA
Veranstaltungsart:Workshop
Veranstaltungsbeginn:11 Juni 2025
Veranstaltungsende:15 Juni 2025
Veranstalter :IEEE / CVF
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt DLR Foundation Models [SY]
Standort: Braunschweig , Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Datenanalyse und -intelligenz
Institut für Flugführung > Systemergonomie
Hinterlegt von: Nareddy, Kartheek Kumar Reddy
Hinterlegt am:19 Aug 2025 15:01
Letzte Änderung:19 Aug 2025 15:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.