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Abstract

The developments in transformer encoder-decoder archi-
tectures have led to significant breakthroughs in machine
translation, Automatic Speech Recognition (ASR), and
instruction-based chat machines, among other applications.
The pre-trained models were trained on vast amounts of
generic data over a few epochs (fewer than five in most
cases), resulting in their strong generalization capabilities.
Nevertheless, the performance of these models does suf-
fer when applied to niche domains like transcribing pilot
speech in the cockpit, which involves a lot of specific vo-
cabulary and multilingual conversations. This paper in-
vestigates and improves the transcription accuracy of cock-
pit conversations with Whisper models. We have collected
around 85 minutes of cockpit simulator recordings and 130
minutes of interview recordings with pilots and manually
labeled them. The speakers are middle aged men speaking
both German and English. To improve the accuracy of tran-
scriptions, we propose multiple normalization schemes to
refine the transcripts and improve Word Error Rate (WER).
We then employ fine-tuning to enhance ASR performance,
utilizing performance-efficient fine-tuning with Low-Rank
Adaptation (LoRA). Hereby, WER decreased from 68.49
% (pretrained whisper Large model without normalization
baseline) to 26.26% (finetuned whisper Large model with
the proposed normalization scheme).

1. Introduction

Automatic Speech Recognition (ASR), transforming audio
signals into text, plays a key role in natural language pro-
cessing [6]. The diversity in speech signals with variations
like gender, accent, pace, external noise, etc. makes ASR
a challenging problem [6]. ASR has found applications
in automatic call handling [10], and personalized AI assis-
tants [15]. Conventional ASR systems rely on a pipeline of
components, including acoustic feature extraction, acoustic

and language modeling, and decoding via Bayes’ decision
rule [4]. With the advent of deep learning, both acoustic
and language modeling have been revolutionized [5], ulti-
mately leading to end-to-end models [9].

Publicly available datasets like LibriSpeech [16], Com-
mon Voice [2], and SpeechStew [7] contributed towards
training and testing newly upcoming ASR models. How-
ever, the increasing size of neural networks has outpaced
the size of these labeled datasets, often resulting in over-
fitting and poor generalization [12]. This challenge has
motivated the creation of large-scale unlabeled or weakly
labeled datasets, such as BigSSL (1 million hours) [22],
GigaSpeech [8], and People’s Speech [11]. Among con-
temporary ASR models, OpenAI’s Whisper stands out for
its large-scale, weakly supervised training across 680,000
hours of multilingual data, incorporating both supervised
and unsupervised techniques to achieve broad generalizabil-
ity across diverse domains and languages [20].

While Whisper and other transformer-based models
(e.g., Wav2Vec [3], SpeechStew[7], DeepSpeech[1]) per-
form impressively on general speech data, their accuracy
can degrade in domain-specific contexts [21]. Fine-tuning,
the process of adapting a pre-trained model to a specific
task or dataset, has emerged as a powerful method to en-
hance ASR performance under such conditions [14]. Fine-
tuning has proven effective across diverse application areas,
including healthcare and low-resource languages. For ex-
ample, adapting Whisper for Nepali speech led to substan-
tial reductions in Word Error Rate (WER), with improve-
ments up to 36.2% on the small model [18].

In aviation, ASR has also been widely explored for Air
Traffic Control (ATC) communication. Domain-specific
ASR models like Whisper-ATC have achieved as low re-
sults as 1.17% WER on ATCOSIM simulated data and up to
60% improvement through regional fine-tuning [20]. How-
ever, ASR for intra-cockpit communication between pilots
and the fine-tuning of ASR models for that use-case remains
relatively unexplored. Accurate transcription in this context
can support human factors research, assess teamwork dy-



namics, and lay the groundwork for speech-driven cockpit
automation systems. Studies in the past considered hidden
markov models based transcription technologies aiming to
transcribe cockpit conversations [17, 19]. Yet, the cock-
pit environment poses unique challenges, including over-
lapping speech, multilingual exchanges, high noise levels
and a lot of use-case specific vocabulary.

To tackle these challenges, we explore the fine-tuning
of Whisper models for multilingual pilot communication
in the cockpit. Thereby, we adopt the Hugging Face fine-
tuning pipeline. Our contributions aim to give an overview
over fine-tuning Whisper for this domain, analyze model
performance across different Whisper models and scenar-
ios, proposing new normalization schemes, and establish
groundwork for future ASR applications in the cockpit.

2. Methodology
2.1. Dataset
The dataset consists of 85 minutes of cockpit simulator
recordings and 130 minutes of pilot interviews. The record-
ings cover various cockpit communication scenarios, in-
cluding checklists, briefings, and emergency procedures,
and reflect typical cockpit vocabulary. The audio is mul-
tilingual, with a mix of German and English as commonly
spoken by German pilots. All audio was converted to MP3,
segmented into 30-second clips, and resampled to 16 kHz.
Manual transcripts were created as ground-truth references.
The speakers are middle-aged male pilots.

2.2. Metrics
To evaluate transcription accuracy, WER was used as the
primary metric. WER was computed using the jiwer li-
brary1, which provides a standardized implementation for
text-based error measurement. WER is a common metric in
speech recognition and is defined as, WER =

S +D + I

N
,

where S represents the number of substitutions, D the num-
ber of deletions, I the number of insertions, and N the total
number of words in the reference text. A lower WER indi-
cates a more accurate transcription.

2.3. Transcript Normalization
In this paper, various normalization schemes are being com-
pared. First, three normalization steps from Whisper were
applied: Basic normalization, which includes case lowering
and the removal of special characters; Number normaliza-
tion, which converts numeric expressions into Arabic nu-
merals; and the English normalizer, which combines text,
number, and spelling normalization.

In addition to these, we introduce Proposed I, a cus-
tom normalization function incorporating similar process-
ing for numbers, spelling, and punctuation with additional

1https://jitsi.github.io/jiwer/

functions for transforming the ICAO-alphabet into standard
letters (e.g., ”DELTA” into ”D”) , removing filler words,
and normalizing compound words (e.g., ensuring ”take-
off,” ”takeoff,” and ”take off” are treated as equivalent).
Lastly, we evaluated two combined approaches: Proposed
II, which applies Proposed I first, followed by English nor-
malizer, and Proposed III, which applies English normal-
izer first, followed by Proposed I. Throughout the combined
normalization approaches, the spelling and number normal-
izers are solely taken from the Whisper English normalizer.

2.4. Finetuning
The fine-tuning step of this study was conducted using the
audio files and transcriptions from Section 2.1. For fine-
tuning, the dataset was divided into a training set consisting
of 158 audio files and a test set containing 40 audio files.
Furthermore, the HuggingFace Transformers Python pack-
age was utilized to handle the fine-tuning procedure. Labels
were extracted using the Whisper tokenizer. The log-mel
spectrogram was computed using the feature extractor and
processed as features. The data collator was used to en-
sure that the length of the features matched that of the input
tokens. We used the LoRA [13] fine-tuning method, with
learnable parameters amounting to approximately 1% of the
model’s total parameters. Fine-tuning of the Whisper mod-
els was performed using an NVIDIA Tesla V100. Hereby,
multiple learning rates from {1e-5, 1e-4, 1e-3} were tested.

3. Results & Discussion
3.1. Baseline Results
We transcribed the audio files across the five scenarios us-
ing the family of multilingual whisper models. Then we
computed the WER between predictions and the reference
transcriptions. The results are shown in Figure 1. Whis-
per Tiny and Base models have WERs exceeding 100% in
a few cases, indicating notable transcription errors. The
Small and Medium Whisper models have considerable per-
formance improvement over Tiny and Base, with WER in
the 75-85% range on average. Whisper Turbo has 73.92%
mean WER and Large-v3 (henceforth called as Large) has
66.44% WER, indicating the necessity for fine-tuning and
text normalization.

3.2. Effect of Normalization
Table 1 shows a comparison of normalization schemes con-
sidered in this paper. The raw text predicted by the Whis-
per model is noted as no-norm(alization) text and has the
highest WER. Basic text normalizer does have decent per-
formance improvement over no-norm, while Number nor-
malizer is falling behind the basic text normalizer. English
normalizer on the other hand has best performance among
the baseline normalizers considered. Three normalization
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Figure 1. Baseline Word Error Rate (WER) comparison across
family of Whisper models for various pilot speech scenarios.

Table 1. WER (in %) comparison of proposed normalization meth-
ods against baselines across family of Whisper models.

Normalizer Tiny Base Small Medium Turbo Large
No-norm 94.41 96.00 85.64 81.64 70.20 68.49

Basic 91.73 84.70 69.35 62.96 49.49 52.23
Number 89.13 88.70 77.41 70.84 62.18 59.76
English 88.37 84.58 69.16 62.43 48.88 52.08

Proposed I 85.68 83.10 69.05 63.19 49.68 52.74
Proposed II 88.41 84.25 69.87 62.60 48.69 52.00
Proposed III 88.21 82.96 68.76 62.54 48.70 52.41

schemes are presented in this paper, namely, Proposed I, II,
and III. Among these, Proposed II and Proposed III have the
lowest WERs for most of the Whisper models. This shows
that normalizing ICAO-alphabets and removing filler words
in combination with English normalizer results in the best
performance.

3.3. Effect of Fine-Tuning
Fine-tuning the Whisper language models further resulted
in improved transcription accuracy. The results of LoRA
fine-tuning, with approximately 1% of learnable parame-
ters, on Whisper Large and Turbo models are given in Ta-
bles 10 and 11. The fine-tuning results of the remaining
Whisper models and relevant Python scripts can be found
in the supplementary material. The Whisper Turbo model,
when fine-tuned with 6, 553, 600 parameters, representing
0.8% of its 815, 431, 680 total parameters, achieved a WER
reduction from 70.20% to 61.82% without any normaliza-
tion. Similarly, the Whisper Large model showed a drop in
WER from 68.49% to 55.65% with fine-tuning alone, de-
pending on the learning rate. We experimented with dif-
ferent learning rates, and the optimal values varied between
models. Whisper Turbo gave the best results at a learning
rate of 1e-5, while Whisper Large models performed best
with a 1e-3 learning rate.

3.4. Combining Normalization and Fine-Tuning
As shown in Section 3.2, normalization alone provides a
notable improvement in transcription accuracy. However,

Table 2. LoRA fine-tuning on Whisper Large model with various
learning rates. The numbers indicate WER in %.

Normalizer pre-trained lr=1e-5 lr=1e-4 lr=1e-3
No-norm 68.49 58.83 64.36 55.65

Basic 52.23 27.96 37.09 27.37
Number 59.76 46.10 48.30 50.08
English 52.08 27.80 36.71 26.36

Proposed I 52.74 32.72 37.35 38.37
Proposed II 52.00 27.65 36.41 26.26
Proposed III 52.41 28.24 36.60 27.00

Table 3. LoRA fine-tuning on Whisper Turbo model with various
learning rates. The numbers indicate WER in %.

Normalizer pre-trained lr=1e-5 lr=1e-4 lr=1e-3
No-norm 70.20 61.82 64.67 65.06

Basic 49.49 28.18 29.04 31.02
Number 62.18 43.08 46.64 47.61
English 48.88 28.01 28.81 30.40

Proposed I 49.68 29.17 29.98 31.70
Proposed II 48.69 28.24 28.88 30.32
Proposed III 48.71 28.40 28.67 30.55

an interesting finding is that its effect becomes even more
pronounced when applied after fine-tuning. For example,
the Whisper Large model had a WER of 68.49% without
normalization, which decreased to 52.00% when the pro-
posed II normalizer was applied to the pre-trained model.
After fine-tuning (with a learning rate of 1e-3), the model’s
WER without normalization was 55.65%, and further de-
creased to 26.26% when combined with the same normal-
ization method. This demonstrates that while normaliza-
tion improves performance on its own, its impact is more
pronounced after the model has been fine-tuned. A simi-
lar trend was observed for the Whisper Turbo model, where
the WER dropped from 70.20% (pre-trained, no normaliza-
tion) to 61.82% after fine-tuning with a 1e-5 learning rate.
When English normalization was applied, the WER further
reduced to 28.01%. These results suggest that combining
normalization with fine-tuning can yield greater improve-
ments than using either approach independently.

4. Future Work
Though fine-tuning enhanced the ASR performance, the re-
ported 26% WER in Section 3.3 is not suitable for reliable
deployment. One promising direction is to utilize prompt-
ing to provide context and aid in recognition of domain-
specific vocabulary. Further, we aim to generate more data
for improving the fine-tuning performance. The WER com-
putation does play a crucial role in determining the suitabil-
ity of the language model for transcription. A context-based
WER computation that overlooks minor grammatical varia-



tions typical of spoken language could provide a more accu-
rate reflection of ASR model performance. Therefore, fur-
ther improvements in normalization, as well as methods to
assess whether the transcribed content conveys the intended
meaning, should be considered.

5. Conclusion
In this paper the transcription of cockpit conversations us-
ing Whisper language models was explored. The audio
files contain conversations between pilots in both German
and English languages. The Whisper models transcribed
the conversations with a high WER, which necessitates nor-
malization and fine-tuning. Thereby, whisper normalization
was utilized and own normalization schemes to normalize
ICAO-alphabet, compound words and remove filler words
were introduced, which resulted in better performance.
Finetuning with Low-rank adaptation combined with nor-
malization resulted in reduction of WER from 70.20% (pre-
trained Whisper Turbo model without normalization base-
line) to 28.01% (fine-tuned Whisper Turbo model with the
Proposed II normalization scheme) on the test dataset. The
results emphasize the importance of domain adaptation for
ASR models, particularly with technical vocabulary, multi-
lingual speech, etc. Future work could include the explo-
ration of prompting strategies, the creation of more training
data, and more effective error computation approaches to
further enhance the performance.
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6. Additional Results

6.1. Dataset Adaptation: Scenario Comparison

In the supplementary results, we additionally compare tran-
scription performance across four distinct operational sce-
narios: Takeoff briefings and checklists (10 scenarios,
20 minutes), ECAM actions (11 scenarios, 30 minutes),
FORDEC decision-making procedures (3 scenarios, 15
minutes), and landing briefings and checklists (5 scenarios,
20 minutes). Additionally, a controlled interview scenario
incorporating aviation-specific vocabulary was included for
comparison (12 scenarios, 130 minutes).

6.2. Effect of Normalization

A comparison of different normalization schemes is pre-
sented in Tables 4 to 8. The evaluation of various nor-
malizers across a family of Whisper models on five dis-
tinct scenarios: ECAM, FORDEC, Interview, Landing, and
Takeoff shows a consistent trends in performance improve-
ments. Across all scenarios, the No-norm baseline ex-
hibits the highest word error rate (WER), indicating that
raw model outputs contain significant transcription errors.
Among the baseline normalizers, the Basic and English ap-
proaches consistently outperform the Number normalizer,
with notable reductions in WER. The proposed normaliza-
tion techniques further refine these results, with Proposed
II and Proposed III showing the most robust performance
across different Whisper models. Larger models (Turbo and
Large) tend to benefit more from normalization than smaller
models (Tiny and Base), suggesting that model capacity in-
fluences the effectiveness of text normalization.

In the ECAM and FORDEC scenarios, the Proposed II
and Proposed III normalizers achieve the lowest WER for
Medium, Turbo, and Large models. Specifically, in ECAM,
Proposed II achieves a WER of 49.48 for Large, while in
FORDEC, Proposed III achieves a WER of 43.09 for Large.
The Interview scenario follows a similar trend, with Pro-
posed II yielding the best results across most model sizes,
achieving a WER of 23.75 % for Large. The English nor-
malizer performs comparably well, often ranking close to
Proposed II. For Landing scenario, Proposed II achieves
the lowest WER of 64.86 for Large, whereas for Takeoff,
Proposed III yields the lowest WER of 44.89. Overall, the
results emphasize the importance of selecting appropriate
normalization strategies to enhance ASR accuracy, partic-
ularly in specialized domains where raw model predictions
tend to exhibit high error rates.

Table 4. ECAM: Comparison of proposed normalizers with base-
lines.

Normalizer Tiny Base Small Medium Turbo Large
No-norm 105.49 106.49 97.04 82.81 84.02 74.32

Basic 96.44 94.62 79.79 67.91 65.82 50.27
Number 98.18 98.38 86.13 73.74 77.31 59.25
English 94.57 94.37 79.86 67.47 65.39 50.07

Proposed I 94.78 94.85 79.60 64.73 65.90 50.58
Proposed II 94.75 94.44 79.64 67.02 65.14 49.48
Proposed III 94.65 94.58 79.33 64.18 65.24 50.15

Table 5. FORDEC: Comparison of proposed normalizers with
baselines.

Normalizer Tiny Base Small Medium Turbo Large
No-norm 118.98 96.48 77.56 69.42 64.20 63.59

Basic 104.85 84.42 61.19 54.51 46.46 43.38
Number 107.37 88.66 68.74 61.66 55.67 52.68
English 104.28 81.39 60.90 54.34 46.06 42.69

Proposed I 103.33 83.22 61.26 54.48 46.32 43.62
Proposed II 104.73 81.66 61.28 54.49 45.96 43.34
Proposed III 103.32 80.05 61.09 54.38 45.96 43.09

Table 6. Interview: Comparison of proposed normalizers with
baselines.

Normalizer Tiny Base Small Medium Turbo Large
No-norm 68.26 51.21 45.08 45.64 34.10 34.10

Basic 59.26 41.49 34.95 37.49 25.18 23.82
Number 66.79 48.93 42.73 43.98 32.01 31.08
English 58.96 41.53 34.92 37.46 25.12 23.82

Proposed I 59.72 41.50 35.35 37.58 25.38 24.13
Proposed II 59.35 41.41 34.78 37.44 25.05 23.75
Proposed III 59.37 41.56 35.29 37.58 25.33 24.07

Table 7. Landing: Comparison of proposed normalizers with base-
lines.

Normalizer Tiny Base Small Medium Turbo Large
No-norm 95.86 140.83 98.66 84.34 86.30 82.10

Basic 90.78 118.61 86.56 67.72 80.12 65.59
Number 90.65 123.06 90.42 73.47 81.49 69.37
English 87.43 119.16 86.18 67.64 75.40 65.48

Proposed I 87.73 118.93 86.36 66.19 76.14 65.10
Proposed II 87.67 119.25 85.74 67.61 75.08 64.86
Proposed III 87.72 119.40 85.92 66.83 75.22 64.58

6.3. Effect of Finetuning
Table 9 provides details about LoRA fine-tuning for differ-
ent sizes of Whisper models. It presents the total number of
parameters in each model, the number of additional LoRA
parameters introduced during fine-tuning, and the percent-



Table 8. Takeoff: Comparison of proposed normalizers with base-
lines.

Normalizer Tiny Base Small Medium Turbo Large
No-norm 119.52 121.93 113.88 94.72 85.41 77.44

Basic 123.36 110.78 93.39 60.46 60.67 46.15
Number 107.50 109.88 98.12 71.71 71.14 55.41
English 112.02 103.74 93.63 60.11 60.11 45.69

Proposed I 105.99 104.62 90.54 60.50 60.79 46.14
Proposed II 112.04 103.75 93.62 59.49 59.77 45.68
Proposed III 108.51 103.69 90.64 59.79 59.64 44.89

Table 9. LoRA Finetuning details

Model Total parameters LoRA parameters Percentage (%)
Tiny 38, 350, 464 589, 824 1.5380
Base 73, 773, 568 1, 179, 648 1.5990
Small 245, 273, 856 3, 538, 944 1.4429

Medium 773, 295, 104 9, 437, 184 1.2204
Turbo 815, 431, 680 6, 553, 600 0.8037
Large 1, 559, 219, 200 15, 728, 640 1.009

age of LoRA parameters relative to the total model size.
LoRA requires only a small fraction (0.8% to 1.6%) of the
total model parameters, reducing the number of trainable
parameters while still allowing effective adaptation.

LoRA fine-tuning on Whisper Large to Whisper Tiny
models with various learning rates is given in Ta-
bles 10 to 15. The fine-tuning results across Whisper
models of varying sizes (Tiny, Base, Small, and Medium)
demonstrate that LoRA fine-tuning leads to significant re-
ductions in WER across all configurations, with the extent
of improvement depending on model size, normalization
technique, and learning rate. The pre-trained models exhibit
relatively high WER, particularly in the absence of normal-
ization, with the No-norm baseline consistently yielding the
worst performance. Fine-tuning improves recognition accu-
racy substantially, with Proposed II and English normalizers
achieving the lowest WER across most scenarios.

For Whisper Medium and Small models, the optimal
learning rate appears to be 1e-3, where Proposed II and
English yield the lowest WER (32.67% and 32.97% for
Medium; 39.18% and 39.11% for Small). However, for
Whisper Base and Tiny models, higher learning rates (1e-3)
occasionally lead to performance degradation before nor-
malization. Notably, the No-norm baseline for Whisper
Tiny at 1e-3 results in a WER of 96.31%, exceeding that
of the pre-trained model, while the normalized WER being
lower for finetuned model over pre-trained. Among the nor-
malization techniques, Proposed II and English consistently
outperform other approaches, demonstrating their effective-
ness in improving ASR accuracy post-fine-tuning.

Table 10. LoRA fine-tuning on Whisper Large model with various
learning rates. The numbers indicate WER in %.

Normalizer pre-trained lr=1e-5 lr=1e-4 lr=1e-3
No-norm 68.49 58.83 64.36 55.65

Basic 52.23 27.96 37.09 27.37
Number 59.76 46.10 48.30 50.08
English 52.08 27.80 36.71 26.36

Proposed I 52.74 32.72 37.35 38.37
Proposed II 52.00 27.65 36.41 26.26
Proposed III 52.41 28.24 36.60 27.00

Table 11. LoRA fine-tuning on Whisper Turbo model with various
learning rates. The numbers indicate WER in %.

Normalizer pre-trained lr=1e-5 lr=1e-4 lr=1e-3
No-norm 70.20 61.82 64.67 65.06

Basic 49.49 28.18 29.04 31.02
Number 62.18 43.08 46.64 47.61
English 48.88 28.01 28.81 30.40

Proposed I 49.68 29.17 29.98 31.70
Proposed II 48.69 28.24 28.88 30.32
Proposed III 48.71 28.40 28.67 30.55

Table 12. LoRA fine-tuning on Whisper Medium model with var-
ious learning rates. The numbers indicate WER in %.

Normalizer pre-trained lr=1e-5 lr=1e-4 lr=1e-3
No-norm 81.64 60.10 66.84 63.85

Basic 62.96 35.69 36.12 33.22
Number 70.84 50.35 50.46 49.27
English 62.43 34.48 35.96 32.97

Proposed I 63.19 36.87 36.76 35.63
Proposed II 62.20 34.60 35.18 32.67
Proposed III 62.54 34.24 36.28 33.22

Table 13. LoRA fine-tuning on Whisper Small model with various
learning rates. The numbers indicate WER in %.

Normalizer pre-trained lr=1e-5 lr=1e-4 lr=1e-3
No-norm 85.64 75.67 70.33 63.72

Basic 69.35 43.26 48.63 39.88
Number 77.41 57.39 67.56 61.53
English 69.16 42.74 47.81 39.11

Proposed I 69.05 43.11 61.84 56.30
Proposed II 68.87 42.49 47.73 39.18
Proposed III 68.76 42.39 49.09 40.19

7. Challenges with multi-lingual speech

Table 16 shows instances where the Whisper model tran-
scriptions struggles with unexpected translation, often mis-
interpreting words or phrases based on phonetic similari-
ties rather than contextual meaning. For example, ”Gut” is



Table 14. LoRA fine-tuning on Whisper Base model with various
learning rates. The numbers indicate WER in %.

Normalizer pre-trained lr=1e-5 lr=1e-4 lr=1e-3
No-norm 96.00 88.56 81.45 73.95

Basic 84.70 60.06 62.64 56.57
Number 88.70 72.29 69.55 72.40
English 84.58 59.92 60.40 56.08

Proposed I 83.10 60.49 58.55 69.97
Proposed II 84.25 60.11 59.95 56.00
Proposed III 82.96 60.55 60.24 57.23

Table 15. LoRA fine-tuning on Whisper Tiny model with various
learning rates. The numbers indicate WER in %.

Normalizer pre-trained lr=1e-5 lr=1e-4 lr=1e-3
No-norm 94.41 92.06 86.34 96.31

Basic 91.73 90.80 66.24 75.79
Number 89.13 86.93 76.28 84.88
English 88.37 84.68 66.33 74.49

Proposed I 85.68 82.94 67.17 74.91
Proposed II 88.41 84.78 66.10 74.69
Proposed III 88.21 84.99 67.04 74.17

Table 16. Transcription with unexpected translation

Reference Prediction
Ist confirmed That was confirmed

Gut Good
Blaues system ist natürlich verloren The blue system is of course lost

daraufhin ein spoiler-pair then a spoiler pair

Table 17. Transcription errors: Words with close phonetics.

Reference Prediction
clear flight control okay, flight control
clear flight control flight control

read status wave status
slats low sled low

CAT3 single cut three single
Inop systems In-hub systems

incorrectly transcribed as ”Good,” reflecting a bias toward
English interpretations. Similarly, longer phrases exhibit
structural differences that lead to errors in word order and
meaning retention.

Table 17 presents cases where the model’s predictions
are very similar to the reference text but still contain sub-
tle inaccuracies. These transcription errors often involve
homophones or phonetically similar words, such as ”slats
low” misrecognized as ”sled slow” and ”CAT3 single” tran-
scribed as ”cut three single.”
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