Lucente, Giovanni und Maarssoe, Mikkel Skov und Konthala, Sanath Himasekhar und Abulehia, Anas und Dariani, Reza und Schindler, Julian (2024) DeepGame-TP: Integrating Dynamic Game Theory and Deep Learning for Trajectory Planning. IEEE Open Journal of Intelligent Transportation Systems, 5, Seiten 873-888. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/OJITS.2024.3515270. ISSN 2687-7813.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10793110
Kurzfassung
Trajectory planning for automated vehicles in traffic has been challenging task and a hot topic in recent research. The need for flexibility, transparency, interpretability and predictability poses challenges in deploying data-driven approaches in this safety-critical application. This paper proposes DeepGame-TP, a game-theoretical trajectory planner that uses deep learning to model each agent's cost function and adjust it based on observed behavior. In particular, a LSTM network predicts each agent's desired speed, forming a penalizing term that reflects aggressiveness in the cost function. Experiments demonstrated significant advantages of this innovative framework, highlighting the adaptability of DeepGame-TP in intersection, overtaking, car following and merging scenarios. It effectively avoids dangerous situations that could arise from incorrect cost function estimates. The approach is suitable for real-time applications, solving the Generalized Nash Equilibrium Problem (GNEP) in scenarios with up to four vehicles in under 100 milliseconds on average.
| elib-URL des Eintrags: | https://elib.dlr.de/211671/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
| Titel: | DeepGame-TP: Integrating Dynamic Game Theory and Deep Learning for Trajectory Planning | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | Oktober 2024 | ||||||||||||||||||||||||||||
| Erschienen in: | IEEE Open Journal of Intelligent Transportation Systems | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
| Band: | 5 | ||||||||||||||||||||||||||||
| DOI: | 10.1109/OJITS.2024.3515270 | ||||||||||||||||||||||||||||
| Seitenbereich: | Seiten 873-888 | ||||||||||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
| ISSN: | 2687-7813 | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | deep learning, generalized nash equilibrium, dynamic game, lstm, trajectory planning | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz | ||||||||||||||||||||||||||||
| Standort: | Braunschweig | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Kooperative Systeme, BS | ||||||||||||||||||||||||||||
| Hinterlegt von: | Lucente, Giovanni | ||||||||||||||||||||||||||||
| Hinterlegt am: | 13 Jan 2025 15:58 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 16 Jan 2025 13:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags