Dietenberger, Steffen und Mueller, Marlin M. und Henkel, Andreas und Dubois, Clemence und Thiel, Christian und Hese, Sören (2025) Mapping Habitat Structures of Endangered Open Grassland Species (E. aurinia) Using a Biotope Classification Based on Very High-Resolution Imagery. Remote Sensing. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs17010149. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
12MB |
Kurzfassung
Analyzing habitat conditions and mapping habitat structures are crucial for monitoring ecosystems and implementing effective conservation measures, especially in the context of declining open grassland ecosystems in Europe. The marsh fritillary (Euphydryas aurinia), an endangered butterfly species, depends heavily on specific habitat conditions found in these grasslands, making it vulnerable to environmental changes. To address this, we conducted a comprehensive habitat suitability analysis within the Hainich National Park in Thuringia, Germany, leveraging very high-resolution (VHR) airborne, red-green-blue (RGB), and color-infrared (CIR) remote sensing data and deep learning techniques. We generated habitat suitability models (HSM) to gain insights into the spatial factors influencing the occurrence of E. aurinia and to predict potential habitat suitability for the whole study site. Through a deep learning classification technique, we conducted biotope mapping and generated fine-scale spatial variables to model habitat suitability. By employing various modeling techniques, including Generalized Additive Models (GAM), Generalized Linear Models (GLM), and Random Forest (RF), we assessed the influence of different modeling parameters and pseudo-absence (PA) data generation on model performance. The biotope mapping achieved an overall accuracy of 81.8%, while the subsequent HSMs yielded accuracies ranging from 0.69 to 0.75, with RF showing slightly better performance. The models agree that homogeneous grasslands, paths, hedges, and areas with dense bush encroachment are unsuitable habitats, but they differ in their identification of high-suitability areas. Shrub proximity and density were identified as important factors influencing the occurrence of E. aurinia. Our findings underscore the critical role of human intervention in preserving habitat suitability, particularly in mitigating the adverse effects of natural succession dominated by shrubs and trees. Furthermore, our approach demonstrates the potential of VHR remote sensing data in mapping small-scale butterfly habitats, offering applicability to habitat mapping for various other species.
elib-URL des Eintrags: | https://elib.dlr.de/211558/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Mapping Habitat Structures of Endangered Open Grassland Species (E. aurinia) Using a Biotope Classification Based on Very High-Resolution Imagery | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 4 Januar 2025 | ||||||||||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
DOI: | 10.3390/rs17010149 | ||||||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||||||
Name der Reihe: | Towards Biodiversity Conservation: Remote Sensing Applications in Ecological Modeling | ||||||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | habitat suitability model (HSM); biotope classification; very high-resolution (VHR) imagery; convolutional neural networks (CNN); marsh fritillary; Hainich National Park | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Klima, Wetter und Umwelt, R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||||||||||
Hinterlegt von: | Müller, Marlin | ||||||||||||||||||||||||||||
Hinterlegt am: | 07 Jan 2025 12:19 | ||||||||||||||||||||||||||||
Letzte Änderung: | 15 Jan 2025 13:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags