elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Mapping Habitat Structures of Endangered Open Grassland Species (E. aurinia) Using a Biotope Classification Based on Very High-Resolution Imagery

Dietenberger, Steffen und Mueller, Marlin M. und Henkel, Andreas und Dubois, Clemence und Thiel, Christian und Hese, Sören (2025) Mapping Habitat Structures of Endangered Open Grassland Species (E. aurinia) Using a Biotope Classification Based on Very High-Resolution Imagery. Remote Sensing. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs17010149. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
12MB

Kurzfassung

Analyzing habitat conditions and mapping habitat structures are crucial for monitoring ecosystems and implementing effective conservation measures, especially in the context of declining open grassland ecosystems in Europe. The marsh fritillary (Euphydryas aurinia), an endangered butterfly species, depends heavily on specific habitat conditions found in these grasslands, making it vulnerable to environmental changes. To address this, we conducted a comprehensive habitat suitability analysis within the Hainich National Park in Thuringia, Germany, leveraging very high-resolution (VHR) airborne, red-green-blue (RGB), and color-infrared (CIR) remote sensing data and deep learning techniques. We generated habitat suitability models (HSM) to gain insights into the spatial factors influencing the occurrence of E. aurinia and to predict potential habitat suitability for the whole study site. Through a deep learning classification technique, we conducted biotope mapping and generated fine-scale spatial variables to model habitat suitability. By employing various modeling techniques, including Generalized Additive Models (GAM), Generalized Linear Models (GLM), and Random Forest (RF), we assessed the influence of different modeling parameters and pseudo-absence (PA) data generation on model performance. The biotope mapping achieved an overall accuracy of 81.8%, while the subsequent HSMs yielded accuracies ranging from 0.69 to 0.75, with RF showing slightly better performance. The models agree that homogeneous grasslands, paths, hedges, and areas with dense bush encroachment are unsuitable habitats, but they differ in their identification of high-suitability areas. Shrub proximity and density were identified as important factors influencing the occurrence of E. aurinia. Our findings underscore the critical role of human intervention in preserving habitat suitability, particularly in mitigating the adverse effects of natural succession dominated by shrubs and trees. Furthermore, our approach demonstrates the potential of VHR remote sensing data in mapping small-scale butterfly habitats, offering applicability to habitat mapping for various other species.

elib-URL des Eintrags:https://elib.dlr.de/211558/
Dokumentart:Zeitschriftenbeitrag
Titel:Mapping Habitat Structures of Endangered Open Grassland Species (E. aurinia) Using a Biotope Classification Based on Very High-Resolution Imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dietenberger, Steffensteffen.dietenberger (at) dlr.dehttps://orcid.org/0009-0003-2771-6068175162242
Mueller, Marlin M.marlin.mueller (at) dlr.dehttps://orcid.org/0000-0001-7267-3886175162243
Henkel, AndreasAndreas.Henkel (at) NNL.thueringen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dubois, Clemenceclemence.dubois (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thiel, ChristianChristian.Thiel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hese, Sörensoeren.hese (at) uni-jena.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 Januar 2025
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.3390/rs17010149
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
Name der Reihe:Towards Biodiversity Conservation: Remote Sensing Applications in Ecological Modeling
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:habitat suitability model (HSM); biotope classification; very high-resolution (VHR) imagery; convolutional neural networks (CNN); marsh fritillary; Hainich National Park
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehr und Auswirkungen
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AI - Luftverkehr und Auswirkungen
DLR - Teilgebiet (Projekt, Vorhaben):L - Klima, Wetter und Umwelt, R - Fernerkundung u. Geoforschung
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften
Institut für Datenwissenschaften > Datenanalyse und -intelligenz
Hinterlegt von: Müller, Marlin
Hinterlegt am:07 Jan 2025 12:19
Letzte Änderung:15 Jan 2025 13:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.