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Abstract: Analyzing habitat conditions and mapping habitat structures are crucial for
monitoring ecosystems and implementing effective conservation measures, especially in
the context of declining open grassland ecosystems in Europe. The marsh fritillary (Eu-
phydryas aurinia), an endangered butterfly species, depends heavily on specific habitat
conditions found in these grasslands, making it vulnerable to environmental changes. To
address this, we conducted a comprehensive habitat suitability analysis within the Hainich
National Park in Thuringia, Germany, leveraging very high-resolution (VHR) airborne,
red-green-blue (RGB), and color-infrared (CIR) remote sensing data and deep learning
techniques. We generated habitat suitability models (HSM) to gain insights into the spatial
factors influencing the occurrence of E. aurinia and to predict potential habitat suitability
for the whole study site. Through a deep learning classification technique, we conducted
biotope mapping and generated fine-scale spatial variables to model habitat suitability. By
employing various modeling techniques, including Generalized Additive Models (GAM),
Generalized Linear Models (GLM), and Random Forest (RF), we assessed the influence
of different modeling parameters and pseudo-absence (PA) data generation on model
performance. The biotope mapping achieved an overall accuracy of 81.8%, while the subse-
quent HSMs yielded accuracies ranging from 0.69 to 0.75, with RF showing slightly better
performance. The models agree that homogeneous grasslands, paths, hedges, and areas
with dense bush encroachment are unsuitable habitats, but they differ in their identifica-
tion of high-suitability areas. Shrub proximity and density were identified as important
factors influencing the occurrence of E. aurinia. Our findings underscore the critical role of
human intervention in preserving habitat suitability, particularly in mitigating the adverse
effects of natural succession dominated by shrubs and trees. Furthermore, our approach
demonstrates the potential of VHR remote sensing data in mapping small-scale butterfly
habitats, offering applicability to habitat mapping for various other species.

Keywords: habitat suitability model (HSM); biotope classification; very high-resolution
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1. Introduction

Monitoring ecosystems and implementing effective conservation measures require
detailed analysis of habitat conditions and the quantification of habitat structures for
endangered species [1]. European open grasslands, known for their high biodiversity, serve
as critical habitats for many endangered plant and animal species [2]. Unfortunately, these
grasslands have significantly declined or disappeared over recent decades [3,4]. This loss
is largely due to the conversion of grasslands into agricultural and urban areas, as well
as their transitions into shrubland and forests through natural succession [5-7]. Many
butterfly species depend exclusively on grassland ecosystems, with their survival closely
tied to specific habitat conditions and plants species, rendering them highly vulnerable to
environmental changes [8,9].

The butterfly Euphydryas aurinia, commonly known as the marsh fritillary, is dis-
tributed across Europe and parts of Asia. However, populations have severely declined in
recent decades [10], and the butterfly is listed as an endangered species on the European
red list of butterflies [11]. The species is afforded special protection under the EU Habitats
Directive, listed in Annex II, requiring EU member states to designate special protection
areas [12]. This often regionally monophagous species inhabits flower-rich calcareous
grasslands and wet meadows, preferring short, grassy vegetation. Shifts in land use away
from open grasslands and eutrophication due to intense fertilization practices have led to its
disappearance in several regions. Its dependence on specific habitat conditions, especially
the abundance of host plants for the butterfly eggs and larvae, such as Succisa pratensis
or Scabiosa columbaria, has made it particularly vulnerable to habitat changes [13,14]. In
Thuringia, Germany, it was once widespread in nutrient-poor wet meadows but now
predominantly inhabits dry, scabious-rich grasslands, favoring Scabiosa columbaria as its
main food source, with Knautia arvensis and Dipsacus fullonum serving as alternative food
plants [15].

Analyzing habitat conditions in terms of the specific environmental factors that in-
fluence the presence or absence of E. aurinia can provide valuable insights into how to
manage open grasslands and conserve this species. These relationships between species’
spatial distribution and certain spatial explicit environmental variables (e.g., climate, land
cover type, soil, topography) are generally investigated using habitat suitability models
(HSM) [16,17]. These models analyze the empirical relationship between species presence
and specific habitat conditions by establishing statistical equations, such as Generalized
Additive Models (GAMSs), Generalized Linear Models (GLMs), Random Forest (RF), Ar-
tificial Neural Networks (ANN), or Maximum Entropy (MaxEnt) [18-20]. Defining these
relationships provides an understanding of the environmental conditions that promote the
occurrence of the species and allows for predicting the probability of species occurrence
based on certain habitat conditions, which can then be used to model habitat suitability [18].
In some cases, HSMs are also referred to as species distribution models (SDM), bioclimatic
envelope models, or ecological niche models, which are terms used synonymously or with
slight differences in their definition and goals. For example, one distinction is whether the
model aims to map the potential or the actual distribution of the observed species.

Spatially explicit information on environmental variables needed for HSMs is often
derived from remote sensing (RS) data. RS applications can map large study areas that
cannot be monitored by in situ surveys. RS has already been used for habitat suitability
mapping in a broad range of studies [21], often focusing on a specific animal species such as
bird species [22] or termites [23]; plant species such as seagrass [18,24] or Bromeliaceae [25];
and even viruses [26].

The use of RS data and techniques for habitat mapping on different scales depends
on the spatial, temporal, and spectral resolution of the available data [1,27-31]. While a
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wide range of satellite images with high temporal and spectral resolution is nowadays
freely available, the potential of airborne and unmanned aerial vehicle (UAV) data lies
in their very high spatial resolution, in the range of a few centimeters. This allows for
detailed mapping of landscape-scale habitat structures [27,32-34]. Butterfly species, in
particular, often depend on specific micro-habitat structures and have limited mobility.
E. aurinia is relatively sedentary [35], with most individuals moving less than 100 m between
two capturing events [36,37]. This necessitates small-scale monitoring, making VHR data
crucial for habitat mapping [38-41].

We analyzed the habitat suitability of E. aurinia within the open grassland areas of the
Hainich National Park (HNP) in Thuringia, Germany. The analysis integrates an RS land
cover type classification with habitat suitability modelling using different HSMs. In the
first step, classification based on object-oriented image analysis (OBIA) using VHR airborne
RGB data is implemented. In the second step, these classification results are used to model
the habitat suitability of the marsh fritillary butterfly. The aim of the habitat analysis is
to identify the spatial factors that either favor or hinder the presence of this endangered
species in the study site. This knowledge can be used by the HNP administration to
improve habitat conditions through targeted management and conservation measures.

Our approach leverages VHR airborne data to facilitate precise mapping of small-
scale butterfly habitats. This innovative approach integrates deep learning classification
techniques with habitat mapping. Initially tailored for the case study of E. aurinia, our
method is versatile and can be applied to the small-scale habitat mapping of various
other species. As we exclusively utilize an RS-based approach for habitat modeling, our
analysis is constrained to a subset of variables delineating land cover characteristics and
vegetation structure.

2. Materials
2.1. Study Area: Open Grassland Within Hainich National Park

HNP in the state of Thuringia, central Germany, encompasses a 7,500-ha protected
area, primarily managed without any human intervention (Figure 1). It was established
in December 1997 on land previously used for military purposes, impeding other human
activities. It is part of the special area of conservation “Hainich” and the European network
of protected areas “Natura 2000” [42]. The park is situated within a range of hills between
225 and 493 m a.m.s.l. composed of limestone layers (Muschelkalk) from the Middle Triassic
age [43,44].

While a substantial portion of HNP is characterized by structurally diverse deciduous
forests, the southern part comprises an open grassland area interspersed with individual
shrubs and trees. The study site is home to several endangered species, including the
butterfly E. aurinia.

2.2. Data
2.2.1. Remote Sensing Data

Aerial photographs were acquired during two flight campaigns on 22 and 31 July
2020, under sunny weather conditions, utilizing an Ultracam Eagle Mark 3 sensor at an
altitude of approximately 3,000 m. The photos were preprocessed to produce RGB and
CIR orthomosaic, as well as a Canopy Height Model (CHM). The flight campaign and
preprocessing were conducted by the company GeoFly on behalf of the HNP administration.
Additionally, a Digital Terrain Model (DTM) from the Thuringian State Office of Land
Management and Geological Information (geoportal.thueringen.de) was utilized (Table 1).
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Figure 1. Overview of the study area in the southern part of the HNP in central Germany. Two dif-
ferent types of plots (each 1 ha) have been used for collecting the reference data regarding first the
biotope types and second E. aurinia occurrences.

Table 1. Overview of the spectral aerial photos and height models used in the analysis. All data use
the projected coordinate system ETRS89/UTM Zone 32N (EPSG: 25832).

. o Geometric
Dataset Recording Date Description Resolution
Orthomosaic RGB July 2020 Spectral bands: R, G, B 0.1m
. Spectral bands: R,
Orthomosaic CIR July 2020 G, NIR 0.1m
Height difference
between the surface
Canopy Height and ground,
Model (CHM) July 2020 corresponds to the 1Lom
height of the
vegetation
Digital Terrain Height of the ground
Model (DTM) February 2017 surface 0-5m

2.2.2. Reference Data

This study utilized two reference datasets: one detailing biotope types and the other
documenting occurrences of E. aurinia. The biotope types were classified using a mapping
key based on Arweiler et al. [45]. Both datasets were manually collected in the field by
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the Naturforschende Gesellschaft Altenburg (natura2000.nfga.de) on behalf of the HNP
administration. The data are organized into 100 x 100 m plots (1 ha each), regularly
distributed across the study area (Figure 1). The biotope reference data were georeferenced
using a Leica GS004 GNSS (Leica, Wetzlar, Germany) during a field campaign in September
and October 2020, covering 47 plots. Each biotope type identified in the field is represented
by a polygon. Linear features, such as paths, are converted to polygons by applying a 1 m
buffer, resulting in a 2 m width, reflecting the average path width in the study area.

The E. aurinia reference dataset includes all recorded butterfly occurrences within
106 plots, represented as point location. Data collection occurred in May 2020, resulting in
a total of 2381 documented marsh fritillary occurrences.

3. Methods

The analysis follows two main steps: first, the classification of biotope types using
object-based deep learning methods, and second, the application of these classification
products in a habitat structure analysis.

3.1. Classification of Biotope Types

The biotope classification employs a hierarchical classification system containing two
levels (Figure 2). Segmentation and classification were performed using the software
Trimble eCognition (version 9.8).

LEVEL

LEVELA LEVELB

METHOD

CLASSES

EVALUATION

Convolutional Neural Network

“Hard"tiweshoids using 10 variables (CHM, DTM, B, G, R, NIR, NDVI, NDNGI, NDGRI, ExG)

o —
Tree
(NDVI=> 0.05 > Tree
& CHM = 6 m)
—_—
Shrub (tall) Shrub
(NDVI> 0.1 » v <
&CHM0.5-6 m) (combined)
R -
Shrub
Ground Grasland ‘ Open ground J [ Water / wetlands ‘ (short) ’
) 7 ]

81.8% overall accuracy
(using 20% of the reference samples)

Figure 2. Overview of the methodological system used for the biotope classification.

3.1.1. Segmentation

The biotope mapping is based on an object-oriented classification approach, which
requires generating objects prior to classification using a segmentation algorithm:

e Level A: multiresolution segmentation based on CHM with a scale factor of 5
e  Level B: multiresolution segmentation based on the spectral bands (B, G, R, NIR) with
a scale factor of 100, applied within previously classified “ground” objects

3.1.2. Classification

In addition to thresholding, a deep learning approach using a Convolutional Neural
Network (CNN) architecture was employed for classification due to its proven effectiveness
in VHR image analysis and object-based classifications [46—49].

Combining spectral and geometric information has been found to be beneficial in
various CNN classification tasks [50,51]. Therefore, both spectral and geometric information
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were used as inputs, including spectral band layers, height information, and various

vegetation indices (Table 2 and Figure 3).

Table 2. Description of the spectral indices used within the separability analysis.

Index Name Formula Source
NDVI Normalized difference vegetation index %ﬁ%;ﬁ [52]
NDGRI Normalized difference green-red index 1’%;—2 [53]
NDNGI Normalized difference NIR-green index %fﬁ;g [54]
ExG Excess Green Index 2xG—R-B [55]

Spectral Variables Height Variables Indices
« B « NDVI
« G e CHM « NDGRI
« R « DTM « NDNGI
« NIR » ExG

Figure 3. List of variables used as input layers in the CNN model for biotope classification. The
indices are explained in Table 2.

The biotope reference dataset was used for training and validation. Due to class
size imbalances, a representative sub-selection of samples was manually chosen for larger
classes to prevent overestimation of these classes. In total, 20% of the samples were reserved
for evaluation and were not used in the training process. Various parameter combinations
were tested and refined to improve model accuracy. An overview of the applied parameters
is provided in Table 3.

Table 3. Parameter combination applied for the CNN classification of the biotope mapping (level B).

Area Parameters Value
Variables Number of variables 10
Samples file format RAW
Ref. d Number of generated samples 20,000
eference data Size of samples 32 x32x10
Division into training:validation 80:20
Number of intermediate layers 3
Kernel size 1 3
Number of feature maps 1 12
. Kernel size 2 4
CNN architecture Number of feature maps 2 12
Kernel size 3 3
Number of feature maps 3 12
Max pooling (1-3) Yes
Learning rate 0.0006
CNN training Training steps 2000
Batch size 50
. Number of samples 1000
CNN evaluation Overall accuracy 81.1%
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3.2. Habitat Structure Analysis
3.2.1. Selection and Generation of Variables for the Analysis of the Habitat Structure

A total of 16 variables were selected for analyzing habitat structure and creating the
HSM, based on the biotope mapping and RS data (Figure 4).

Variables based on the biotope mapping results

Remote sensing data variables

/

Distance Variables

N/ NIs N N

Relative Area Variables Height Data Indices

Distance from to the
closest....

tree (including forest)
wetland / water

OpenStreetMap)

Relative area (within a
radius of 75 m) of...
. NDVI

shrub
. tree (including forest) CHM . mgﬁg:
wetland / water - Aspect . G
open ground + EX
grassland

AN RS N\ %

Figure 4. Variables used for the analysis of the habitat structure.

To analyze the impact of certain biotope classes on the habitat of E. aurinia and to gain
insights into the preferred habitat structure, two types of variables were generated based on
the biotope mapping results. The first measures the distance (in meters) to specific biotope
classes, while the second quantifies the density or relative area of these classes within a
designated radius. These variables were generated separately for shrubs, trees (including
forest areas), wetland area, and open ground. Additionally, distance variables for roads
were derived from OpenStreetMap (OSM), and relative area variables were calculated
for grassland.

For the relative area variables, a threshold must be chosen to represent the species-
specific area of influence. Junker and Schmitt [37] suggest that the mobility of most E.
aurinia individuals does not exceed 60 m, while Junker et al. [36] propose a distance of
100 m. Therefore, a threshold of 75 m was deemed reasonable to calculate the relative area
variables. For each pixel, the percentage of the surrounding area occupied by each class
was computed, e.g., a value of 0 for the grassland variable indicates no grassland within a
radius of 75 m and 1 indicates 100% grassland. All variables were converted to raster data
with a pixel size of 1 m and used as input to the HSMs. A comparative analysis using the
same data in a higher resolution of 0.25 m did not reveal any relevant deviations in results,
but significantly increased computation times.

3.2.2. Modeling the Habitat Suitability of E. aurinia

To model the presence and habitat structure of the butterfly, we developed various
HSMs using different algorithms such as GLM, GAM, and RF, implemented with the
“biomod2” package (version 3.4.6) in R. These algorithms have demonstrated accurate
habitat suitability predictions in previous research [56-58]. These models required both
presence and absence data; however, our reference data only included presence information.
Therefore, we had to generate pseudo-absence (PA) data within the 1 ha plots where
presence data were collected (Figure 1).

We employed two methods to generate PA points. The “random pseudo-absence”
(R-PA) method involves randomly selecting points within the plots where no butterfly
was observed during the field study. However, nearby points to where the butterfly was
observed might have similar environmental conditions, which could affect the accuracy of
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this method. To address this potential limitation, the “surface range envelope” (SRE-PA)
method selects PA points outside the range of variable values observed for the butter-
fly’s presence. We excluded the lowest and highest 10% of variable values to define this
range. This approach aims to select areas where the butterfly is less likely to occur based
on the observed environmental conditions [59,60]. Following Barbet-Massin et al. [61],
who recommend generating a large number of PA points for models based on regression
methods, we generated 5,000 PA points per method. Two separate datasets with the same
parameters were created for each method to address the influence of the PA method on
model performance.

The RF, GLM, and GAM models were trained with 80% of the data, reserving 20% for
validation. We used Overall Accuracy (OA), Cohen’s Kappa Index, and Receiver Operating
Characteristics (ROC) to assess the model performance. Models were confined to data
within the 1 ha plots, and variable values outside these plots were designated as No-Data.
Default parameters were used for the GLM model, while for the GAM model, the “mgcv”
package was utilized with the Restricted Maximum Likelihood (REML) method and a
smoothing term (k) value of 5. K was chosen through visual elevation of the model output
to achieve an optimal fit, balancing under- and overfitting.

Response curves (RCs) were constructed to explore the relationship between variables
and butterfly occurrence, based on Elith et al.’s [62] concept of the “evaluation strip”. RCs
illustrate the sensitivity of each model to a variable by varying the focal variable across
its range while keeping others constant (typically to the mean value). The probability of
occurrence of the species is calculated over this range. Interactions between variables were
not considered [60,62]. Variable importance was calculated for the RF model.

The GAM and RF models using the SRE-PA dataset had the highest evaluation values
and were used to project habitat suitability across the entire study site. Variable values of
the entire area were now utilized for this purpose. To reduce the granularity and noise
in the prediction map, the resulting GAM model output was filtered using the default
gaussian filter from the Orfeo toolbox [63].

To test model transferability to other species, we applied the developed workflow to
data of bird breeding territories within the same study area and evaluated the performance.

4. Results
4.1. Results of the Biotope Mapping

Prior to classification, the study site of 18,575 hectares was divided into the two major
biotopes of the national park, open grassland and forest, using an existing forest mask. This
resulted in 8,611 hectares of forest, which was excluded from the biotope classification. The
remaining 9,964 hectares of open grassland were used for classification. Figure 5 displays
three subsets of the classification results at level B, achieving an overall accuracy of 81.8%.
As expected, grassland represents the largest area, comprising approximately two-thirds
(67.95%) of the total area, followed by shrubs (24.66%), open ground (4.51%), trees (2.67%),
and wetlands (0.20%).

Shrubs, open ground, trees, and wetlands are not evenly distributed throughout the
study area but are concentrated in specific locations. For instance, the presence of shrubs
varies across different grassland areas. The middle panel of Figure 5 highlights areas
where shrubs are progressively encroaching into open grassland. The gradual transition
from grassland to dense shrub and tree cover is visible, representing different stages
of bush encroachment. Additionally, certain parts of the study site contain clusters of
wetland patches (Figure 5, top panel), which correspond to ponds or depressions that
accumulate with water. These wetlands are typically small, with a mean size of 5.1 m? per
wetland polygon.
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Figure 5. Exemplary subsets of the classification results in biotope types (level B) using a CNN.

4.2. Results of the Habitat Analysis
The results of the habitat analysis are divided into two main areas of focus:

1.  Investigating the relationship between different variables and the likelihood of the
species’ occurrence (Figures 6, 7 and A1)
2. Projecting this probability across the entire study area (Figure 8)

4.2.1. Analysis of the Variable Distribution at the E. aurinia Occurrence Sites

Figure 6 shows the distribution of the variable values at the locations where the marsh
fritillary was found. Each plot shows the frequency distribution of the respective variable
values, providing insights into the habitat conditions that characterize areas occupied by
this endangered species.

4.2.2. Results of the HSM

Validation metrics for each model algorithm and the PA dataset are presented in
Table 4 for the SRE-PA and R-PA generation method. In general, the differences between
the model outputs are within a minor range, with overall accuracy varying between 0.67
and 0.75 across all models and PA generation methods. Among the HSM methods, RF
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consistently achieved the highest scores for Kappa, overall accuracy, and ROC, with values
up to 0.75. Comparing the two PA generation methods, the SRE-PA method produced
slightly better validation metrics for all three models compared to the R-PA method.

Aspect CHM Distance to trees Distance to wetlands Distance to open ground
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150 - 150 - 100- 200
100~ 10001 100~
50 500- ey 50- 100~
0-7 v v v 0-=; v v 0-7 v v —— 0-7 v v v v 0-= v v T
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Variable
Figure 6. Number of occurrences of E. aurinia for the respective variable value.
Table 4. Validation results of the HSM comparing three different methods using pseudo-absence data
generated with the SRE-PA method and with a R-PA selection (two datasets for each model).
PA
Generation  Validation Metrics GLM, GLM, GAM, GAM, RE, RE,
PA Set1 PA Set 2 PA Set1 PA Set 2 PA Set1 PA Set 2
Method
Kappa-Index 0.25 0.29 0.27 0.29 0.34 0.37
SRE-PA Overall Accuracy 0.69 0.71 0.70 0.71 0.73 0.75
ROC 0.69 0.70 0.70 0.71 0.75 0.75
Kappa-Index 0.25 0.28 0.26 0.26 0.28 0.31
R-PA Overall Accuracy 0.69 0.69 0.70 0.70 0.71 0.72
ROC 0.67 0.69 0.69 0.70 0.71 0.72

The transferred model to the data of bird breeding territories achieved similar or
even slightly higher accuracy values, with overall accuracy ranging between 0.76 and 0.82,
indicating general transferability of the model to other species.

The RCs for the GAM and GLM models using two PA datasets each are depicted in
Figure 7 for the SRE-PA method and in Figure A1l for the R-PA method. The RCs of the
RF model did not show a discernible trend for any of the variables and datasets and were
therefore excluded.

The projection of habitat suitability across the entire study site using the RF and GAM
models with the second SRE-PA dataset is illustrated in Figure 8. Lower probability values
can be found in both models within homogeneous grassland areas (e.g., in the northwest),
along paths and hedges (e.g., in the southwest), and in areas with strong bush encroachment
(notably along the eastern border of the study area). Grassland areas with medium presence
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of shrubs and trees are declared in both models with medium to high values, although the
distribution of these areas, particularly hot spots, differ between the models.

Aspect CHM Distance to trees Distance to wetlands SRE PA

1.00-

pesi] data
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Figure 7. Response curves of the variables used for the GAM and GLM methods to model the marsh
fritillary habitat, each for two pseudo-absence datasets generated randomly.
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5. Discussion
5.1. Discussion of the Biotope Mapping

The classification at level B using a CNN achieved an 81.8% accuracy rate for correctly
assigned samples. One advantage of CNNss is their ability to focus not only on the distribu-
tion of variable values but also on the textural features within samples, such as edges [64].
This capability allows for the differentiation of classes even when spectral separability
is low.

Visual inspection of the results confirmed successful identification of small shrubs
and open ground. Wetlands were accurately delineated in many cases, likely due to differ-
ences in NIR values, although misclassification occurred with silted or densely vegetated
wetlands. Misclassifications were less prevalent in the sample-based evaluation, as more
samples were generated for larger land cover classes, even after manual adjustments to the
number of samples per class.

To ensure accurate delineation of path structures, which can be covered with bare
soil, stones, or grass, OSM road data were used for habitat modeling. As these data are
globally available and in most cases highly detailed, incorporating OSM data can be useful
to enhance land cover classification [65,66].

The biotope classification relies on concrete classes, such as tree, shrub, and grassland.
However, the study site reveals a natural succession process from grassland to shrubs
and ultimately to trees, highlighting the continuous and dynamic nature of ecological
phenomena [67,68]. This continuity poses a challenge for categorizing such inherently
continuous ecological processes into distinct classes. While our classification approach
generally provides clarity, transitional states between grassland and shrubs complicates
distinctions. Notably, the presence of grasslands with an herbaceous layer signifies these
transitional states, further blurring the boundaries between categories. Moreover, the
strict threshold for delineating trees and shrubs (Level A) generally ensures classifications
but also risks misclassifying low trees as shrubs. To improve the ecological correctness
of biotope classifications, incorporating more distinct classes, such as ‘grassland with
herbaceous layer’, into the mapping process or utilizing continuous classes could be benefi-
cial [69]. However, this approach might introduce additional uncertainties in classification
accuracies. Robbins [70] describes this phenomenon as “reversed engineering”, where the
environment is redesigned to fit technological needs, with land covers adjusted to match
planners’ concepts [70,71]. Our study emphasizes the importance of acknowledging the
dynamic and continuous nature of ecological processes in RS-based biotope classifications,
advocating for nuanced approaches to address these complexities.

5.2. Discussion of the Habitat Analysis

This section interprets and evaluates the conducted habitat analysis, beginning with a
discussion of the methodology employed and potential sources of uncertainty, followed by
an evaluation of the results focused on habitat structure and suitability projections.

5.2.1. Potential Uncertainty Factors in Habitat Modelling and Parameterization

The HSMs employed in this study achieved a moderate overall accuracy of up to 0.75.
Bryn et al. [72] systematically analyze potential uncertainty factors and errors throughout
the modelling process, emphasizing the importance of selecting the appropriate model,
fine-tuning, and setting parameters [72]. Each stage carries different susceptibilities to
errors [73]. During the HSM setup, various parameters were scrutinized for their impact on
the results, including the choice of the PA method (R-PA, SRE-PA), the choice of a modeling
method (GAM, GLM, RF), and the parameter settings of the individual modeling method
(e.g., the value k for GAM).
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In the marsh fritillary habitat modeling, we examined how two different PA methods
affected RCs. The general trend of RCs for both methods aligns across most variables,
and the differences between the R-PA and SRE-PA methods are generally narrower than
differences observed between the two models or individual runs (Figures Al and 7). The
SRE-PA method slightly outperforms the R-PA method (Table 4), but the difference is
marginal, suggesting that in our study, the influence of the PA model is neglectable. This
contrasts with several other studies that report a considerable influence of the PA method,
especially for regression models [61,74,75].

Overall, the validation resulted in similar accuracies between the model choices
(RF, GAM, GLM). However, Fernandes et al. [73] suggest that the models’ responses
to errors, such as erroneous presence or absence data, could differ. RF may overfit by
incorporating errors while maintain higher accuracy values, whereas GLM can effectively
mitigate errors in the training data [73]. This might explain why, despite slightly higher
accuracy values in the RF model, it was unable to produce a trend in the RC [73]. One the
other hand, the RCs between the two regression methods, GAM and GLM, generally exhibit
similar trends across most variables. However, some curves show some degree of random
variability across multiple runs with the same parameter settings. This variability was
higher for certain variables, such as the vegetation indices used (Table 2), while distance
variables demonstrated lower random variability. The RCs for the indices displayed
partially opposing trends between different runs with the same settings, whereas distance
variables were more robust to both random variability and varying parameters.

Regarding the choice of suitable parameters, the smoothing term k is particularly
important, as it alters the degree to which the model is fitted to the data, exerting a
relatively large influence on the RCs.

5.2.2. Analysis of Habitat Variables on Species Presence

The distribution of E. aurinia occurrences for specific variable values (Figure 6) in-
dicates a normal distribution for most variables. The butterflies tend to be found near
bushes, trees, and roads, except for the distance to wetlands, which does not exhibit a clear
pattern. Grassland predominates around the occurrence points, as expected. Many points
are located on south-facing surfaces, which may partially reflect the overall distribution
of pixel values in the study area, primarily south-facing, and may not explicitly represent
habitat suitability. Here, the RCs of the HSMs offer a decisive advantage by contrasting
presence data with PA data.

The RCs for variables related to the biotope class “shrubs” are particularly consistent
across different runs (Figure Al and Figure 7) and exhibit high variable importance in the
RF model (Figure A2). Two notable trends emerged:

1.  Proximity to shrubs: higher habitat suitability is observed near shrubs, with the
probability of occurrence decreasing to 0 at approximately 30 m from the nearest bush.

2. Shrub encroachment: excessive bush encroachment negatively impacts habitat suit-
ability, as reflected by the variable “relative area shrubs”. Both very low and very high
proportions of shrubs in the vicinity reduce the likelihood of finding the butterfly. This
aligns with the well-established fact that the marsh fritillary disappears as succession
progresses and open grassland becomes dominated by shrubs and trees [10,76]. This
underscores the necessity for human management to counteract natural succession
and preserve habitat suitability, as emphasized in prior studies [77]. Interestingly, our
findings suggest that the species also benefits from the vicinity of shrubs, with an
optimal state observed at around 25-60% relative area of shrubs.

In contrast, an opposite trend is observed for tree density, with the probability of E.
aurinia occurrence consistently decreasing as tree density increases, particularly between
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0-25% relative area of trees. For higher tree densities, the trend becomes less clear. This
decrease in probability may be attributed to E. aurinia’s aversion to shady areas and its
preference for easily accessible, sun-exposed host plants for larval development [14,78].
Our findings also suggest that E. aurinia occupies moist meadows, as indicated by
a modest reduction in butterfly presence likelihood with increased distance from the
nearest wetland area, notably beyond approximately 300 m. This complements rather
than contradicts the species” association with dry grassland habitats in Thuringia [15],
acknowledging that the species is also known to inhabit moist meadows [9,36].

5.2.3. Projections and Spatial Patterns of Habitat Suitability

When evaluating the projections of the HSM, it is important to recognize that these
models identify sites with high or low habitat suitability based solely on the variables
employed. Other potentially unknown influencing factors are not included in the projection.

While the overall distribution of cold spots, representing areas with low habitat
suitability, is largely consistent between the RF and GAM, notable differences emerge in
the identification of hot spots.

Both models agree that areas dominated by homogeneous grassland without shrubs
or trees and those with dense bush encroachment are unsuitable habitats. Also, linear paths
and hedge structures exhibit lower probability values in both models. This aligns with
findings from Betzholtz et al. [78] and Botham et al. [35], who emphasize the significance
of vegetation height in influencing the butterfly’s occurrence, with optimal heights ranging
from 4 to 16 cm [78], a condition which may not be met in either homogeneous grasslands
or dense shrub areas. The importance of vegetation height in general is also reflected in the
high variable importance value of the CHM in the RF model (Figure A2).

However, the models diverge in their predictions of high-suitability areas. GAM
particularly identifies hot spots near wetland patches, as visible in the southeast and the
center of the study area. The model interprets wetlands and their immediate surroundings
(up to a 10 m distance) as important environmental factors for high habitat suitability,
reflecting the role these areas play in the butterfly’s presence [9,36]. This was similarly
found in the RC of the GAM and GLM models, as discussed in the previous section. In
contrast, the RF model does not assign any importance in the presence of wetlands. This
fact is also reflected in the minor importance of the two wetland variables in the RF variable
importance (Figure A2).

RF predicts hot spot areas primarily in areas characterized by medium levels of bush
and tree encroachment, particularly scattered across the northern part of the study site.
These areas are also categorized as having medium to high suitability in the GAM model.
Both models agree on the general habitat suitability of areas featuring a patchy mosaic
of grasslands interspersed with individual shrubs and trees, which may provide a more
diverse structural habitat. However, RF tends to identify specific locations, compared to
more general hot spot areas identified by GAM.

These differences might be attributed to the different underlying model architectures.
As an ensemble machine learning method, RF can capture complex, non-linear relationships
between predictor variables and habitat suitability, and may identify subtle spatial patterns
or combinations of variables that influence habitat suitability, leading to more fragmented
or localized predictions of hotspots. By contrast, GAM uses smooth functions to model
relationships between predictors and the response variable. While GAMs allow for non-
linear effects, their smooth nature can result in more generalized predictions [79]. This
smoothing can reduce sensitivity to fine-scale spatial variability, potentially leading to
broader and more continuous hot spot areas compared to RF. Additionally, both models
can incorporate noise into their predictions through overfitting [73,80].
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In general, both habitat projections reveal distinct landscape structures reflected in
high or low habitat gradients (Figure 8). This phenomenon is notably pronounced in the RF
models’ projections, but it is also observable in the GAM model. The differences highlight
the unique ways each model interprets the data and prioritize specific environmental
predictors. Similar findings have been reported in several other studies, which observed
variations in prediction maps across modeling techniques [80-82]. For instance, Kosicki [81]
compared RF and GAM and concluded, consistent with our results, that the models differ
notably in their approach to assessing the importance of predicting variables and the
ecological complexity of the target species.

These findings emphasize the importance of accounting for differences in model
architecture when interpreting habitat suitability predictions. Relying on a single model
may lead to an incomplete understanding of habitat suitability, especially for complex
species-environment relationships. While both RF and GAM produce plausible results,
their focus on different aspects of the habitat underscores the value of a multi-model
approach. This recommendation aligns with other studies, which advocate for using
ensemble modeling approaches to improve predictive accuracy [82-84].

6. Conclusions

This study provided a comprehensive analysis of habitat suitability for the marsh
fritillary (E. aurinia) within the HNP in Thuringia, Germany, offering valuable insights into
the spatial factors influencing the occurrence of this endangered species. We demonstrated
that combining VHR RS images with deep learning classification techniques can produce
fine-scale spatial variables to model habitat suitability. For instance, distance and density
variables were created to analyze biotope types affecting the butterfly’s presence. Among
other findings, we discussed the role of shrubs in habitat suitability, revealing higher habitat
suitability near shrubs and a negative impact of excessive bush encroachment.

By using CNN s for biotope mapping, we contribute to a growing body of studies that
successfully implement similar approaches [85-87]. Our finding suggests that combining
spectral and geometric data in VHR images, along with enhancing deep learning techniques
with rule-based methods, can improve classification results. Additionally, we advocate for
the use of continuous variables to overcome the limitations of categorizing non-discrete
ecological phenomena.

Employing various modeling techniques such as GLM, GAM, and RF, we scrutinized
the influence of different modeling parameters and PA methods on model performance.
While the PA method has only a minor influence on our output, the choice of model type
notably impacts RC and predictions.

In the habitat suitability modeling, both RF and GAM provided plausible predic-
tions, with moderate accuracy (up to 0.75), and aligned on unsuitable habitats such as
homogeneous grasslands, dense bush encroachment, and linear structures. However, the
models differed in their identification of high-suitability areas, reflecting their unique
interpretations of environmental variables, such as the influence of wetlands.

In conclusion, the applied method offers practical insights for habitat management
strategies in conservation areas. Our findings underscore the critical role of human manage-
ment intervention in preserving habitat suitability, particularly in mitigating the adverse
effects of natural succession dominated by shrubs and trees.
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