Raffin, Antonin and Sigaud, Olivier and Kober, Jens and Albu-Schäffer, Alin Olimpiu and Silverio, Joao and Stulp, Freek (2024) An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks. Reinforcement Learning Journal (RLJ), 1 (1), pp. 92-107. Reinforcement Learning Conference. doi: 10.5281/zenodo.13899776. ISSN 2996-8569.
|
PDF
- Published version
928kB |
Official URL: https://rlj.cs.umass.edu/2024/papers/Paper18.html
Abstract
In search of a simple baseline for Deep Reinforcement Learning in locomotion tasks, we propose a model-free open-loop strategy. By leveraging prior knowledge and the elegance of simple oscillators to generate periodic joint motions, it achieves respectable performance in five different locomotion environments, with a number of tunable parameters that is a tiny fraction of the thousands typically required by DRL algorithms. We conduct two additional experiments using open-loop oscillators to identify current shortcomings of these algorithms. Our results show that, compared to the baseline, DRL is more prone to performance degradation when exposed to sensor noise or failure. Furthermore, we demonstrate a successful transfer from simulation to reality using an elastic quadruped, where RL fails without randomization or reward engineering. Overall, the proposed baseline and associated experiments highlight the existing limitations of DRL for robotic applications, provide insights on how to address them, and encourage reflection on the costs of complexity and generality.
| Item URL in elib: | https://elib.dlr.de/207306/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Article | ||||||||||||||||||||||||||||
| Additional Information: | This work was also supported by ITECH R&D programs of MOTIE/KEIT under Grant 20026194 | ||||||||||||||||||||||||||||
| Title: | An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks | ||||||||||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||||||||||
| Date: | 14 September 2024 | ||||||||||||||||||||||||||||
| Journal or Publication Title: | Reinforcement Learning Journal (RLJ) | ||||||||||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||||||||||
| Open Access: | Yes | ||||||||||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||||||||||
| In SCOPUS: | No | ||||||||||||||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||||||||||||||
| Volume: | 1 | ||||||||||||||||||||||||||||
| DOI: | 10.5281/zenodo.13899776 | ||||||||||||||||||||||||||||
| Page Range: | pp. 92-107 | ||||||||||||||||||||||||||||
| Editors: |
| ||||||||||||||||||||||||||||
| Publisher: | Reinforcement Learning Conference | ||||||||||||||||||||||||||||
| ISSN: | 2996-8569 | ||||||||||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||||||||||
| Keywords: | reinforcement learning, open loop, benchmark | ||||||||||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
| HGF - Program: | Space | ||||||||||||||||||||||||||||
| HGF - Program Themes: | Robotics | ||||||||||||||||||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
| DLR - Program: | R RO - Robotics | ||||||||||||||||||||||||||||
| DLR - Research theme (Project): | R - Autonomous learning robots [RO] | ||||||||||||||||||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
| Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Cognitive Robotics | ||||||||||||||||||||||||||||
| Deposited By: | Raffin, Antonin | ||||||||||||||||||||||||||||
| Deposited On: | 14 Oct 2024 09:49 | ||||||||||||||||||||||||||||
| Last Modified: | 14 Oct 2024 09:49 |
Repository Staff Only: item control page