RLJ | RLC 2024

An Open-Loop Baseline
for Reinforcement Learning Locomotion Tasks

Antonin Raffin Olivier Sigaud Jens Kober
German Aerospace Center (DLR) Sorbonne Université TU Delft
RMC, Weflling, Germany CNRS, ISIR, Paris, France = CoR, Delft, The Netherlands

antonin.raffin@dlr.de

Alin Albu-Schiffer, Joao Silvério & Freek Stulp
German Aerospace Center (DLR)
Robotics and Mechatronics Center (RMC), WeBling, Germany

Abstract

In search of a simple baseline for Deep Reinforcement Learning in locomotion tasks,
we propose a model-free open-loop strategy. By leveraging prior knowledge and
the elegance of simple oscillators to generate periodic joint motions, it achieves re-
spectable performance in five different locomotion environments, with a number of
tunable parameters that is a tiny fraction of the thousands typically required by
DRL algorithms. We conduct two additional experiments using open-loop oscilla-
tors to identify current shortcomings of these algorithms. Our results show that,
compared to the baseline, DRL is more prone to performance degradation when
exposed to sensor noise or failure. Furthermore, we demonstrate a successful trans-
fer from simulation to reality using an elastic quadruped, where RL fails without
randomization or reward engineering. Overall, the proposed baseline and associ-
ated experiments highlight the existing limitations of DRL for robotic applications,
provide insights on how to address them, and encourage reflection on the costs of
complexity and generality.

1 Introduction

The field of deep reinforcement learning (DRL) has witnessed remarkable strides in recent years,
pushing the boundaries of robotic control to new frontiers (Song et al., 2021; Hwangbo et al., 2019).
However, a dominant trend in the field is the steady escalation of algorithmic complexity. As a
result, the latest algorithms require a multitude of implementation details to achieve satisfactory
performance levels (Huang et al., 2022), leading to a concerning reproducibility crisis (Henderson
et al., 2018). Moreover, even state-of-the-art DRL models struggle with seemingly simple problems,
such as the Mountain Car environment (Colas et al., 2018) or the SWIMMER task (Franceschetti
et al., 2022; Huang et al., 2023).

Fortunately, several works have gone against the prevailing direction and tried to find simpler base-
lines, scalable alternatives for RL tasks (Rajeswaran et al., 2017; Salimans et al., 2017; Mania et al.,
2018). These efforts have not only raised questions about the evaluation and trends in RL (Agarwal
et al., 2021), but also emphasized the need for simplicity in the field. The generality of complex
RL algorithms also comes at the price of specificity in task design, in the form of tedious reward
engineering (Lee et al., 2020). We advocate leveraging prior knowledge to reduce complexity, both
in the algorithm and in the task formulation, when tackling specific problem categories such as
locomotion tasks.

RLJ | RLC 2024

In this paper, we introduce an open-loop model-free strategy to serve as a baseline for locomotion
challenges. By studying and comparing the baseline to DRL algorithms in different scenarios, our
goal is not to replace them, but to highlight their existing limitations, provide insights, and encourage
reflection on the costs of complexity and generality.

1.1 Contributions

In summary, the main contributions of our paper are:

e an open-loop model-free baseline for learning locomotion that can handle sparse rewards and
high sensory noise and that requires very few parameters (on the order of tens, Section 2),

o showing the importance of prior knowledge and choosing the right policy structure (Sec-
tion 4.2),

« a study of the robustness of RL algorithms to noise and sensor failure (Section 4.3),
o showing successful simulation to reality transfer, without any randomization or reward en-

gineering, where deep RL algorithms fail (Section 4.4).

2 Open-Loop Oscillators for Locomotion

We draw inspiration from nature and specifically from central pattern generators, as explored
by Righetti et al. (2006); Raffin et al. (2022); Bellegarda & Ijspeert (2022). Our approach lever-
ages nonlinear oscillators with phase-dependent frequencies to produce the desired motions for each
actuator. The equation of one oscillator is:

@ (t) = a; - sin(0;(t) + ;) + b;

. Wswing if sin(6;(t) + ¢;) >0 (1)
0;(t) = _
Wstance otherwise
where qldes is the desired position for the i-th joint, a;, 8;, p; and b; are the amplitude, phase, phase

shift and offset of oscillator i. wswing and Wsance are the frequencies of oscillations in rad/s for the
swing and stance phases. To keep the search space small, we use the same frequencies wgying and
Wstance 10T all actuators.

This formulation is both simple and fast to compute; in fact, since we do not integrate any feedback
term, all the desired positions can be computed in advance. The phase shift ¢; plays the role of the
coupling term found in previous work: joints that share the same phase shift oscillate synchronously.
However, compared to previous studies, the phase shift is not pre-defined but learned.

Optimizing the parameters of the oscillators is achieved using black-box optimization (BBO), specif-
ically the CMA-ES algorithm (Hansen et al., 2003; Hansen, 2009) implemented within the Optuna li-
brary (Akiba et al., 2019). This choice stems from its performance in our initial studies and its ability
to escape local minima. In addition, because BBO uses only episodic returns rather than immediate
rewards, it makes the baseline robust to sparse or delayed rewards. Finally, a proportional-derivative
(PD) controller converts the desired joint positions generated by the oscillators into desired torques.

3 Related Work

The quest for simpler RL baselines. Despite the prevailing trend towards increasing complexity,
some research has been dedicated to developing simple yet effective baselines for solving robotic
tasks using RL. In this vein, Rajeswaran et al. (2017) proposed the use of policies with simple
parametrization, such as linear or radial basis functions (RBF), and highlighted the brittleness of RL

RLJ | RLC 2024

agents. Concurrently, Salimans et al. (2017) explored the use of evolution strategies as an alternative
to RL, exploiting their fast runtime to scale up the search process. More recently, Mania et al. (2018)
introduced Augmented Random Search (ARS), a straightforward population-based algorithm that
trains linear policies. Building on these efforts, we seek to further simplify the solution by proposing
an open-loop baseline that generates desired joint trajectories independently of the robot state.

Periodic policies for locomotion. Rhythmic movements being a fundamental component of
locomotion (Delcomyn, 1980; Cohen & Wallén, 1980; Ijspeert, 2008), oscillators have been integrated
into robotic control to solve locomotion tasks (Crespi & Ijspeert, 2008; Iscen et al., 2013), with recent
work focusing on quadruped robots (Kohl & Stone, 2004; Tan et al., 2018; Iscen et al., 2018; Yang
et al., 2022; Bellegarda & Ijspeert, 2022; Raffin et al., 2022). However, surprisingly, and to the
best of our knowledge, no previous studies have explored the use of open-loop oscillators in RL
locomotion benchmarks. This may be due to the belief that open-loop control is insufficient for
stable locomotion (Iscen et al., 2018). Our work aims to address this gap by evaluating open-loop
oscillators in RL locomotion tasks and on a real hardware, directly in joint space, eliminating the
need for inverse kinematics and pre-defined gaits.

4 Results

We study and compare DRL algorithms to our baseline through experiments on locomotion tasks,
including simulated tasks and transfer to a real elastic quadruped.

Our goal is to address three key questions:

e How do open-loop oscillators fare against deep reinforcement learning methods in terms of
performance, runtime and parameter efficiency?

o How resilient are RL policies to sensor noise, failures and external perturbations when
compared to the open-loop baseline?

e How do learned policies transfer to a real robot when training without randomization or
reward engineering?

By investigating these questions, we aim to provide a comprehensive understanding of the strengths
and limitations of our proposed approach and shed light on the potential benefits of leveraging prior
knowledge in robotic control.

4.1 Implementation Details

For the RL baselines, we utilize JAX implementations from Stable-Baselines3 (Bradbury et al., 2018;
Raffin et al., 2021a) and the RL Zoo (Raffin, 2020) training framework. The search space used to
optimize the parameters of the oscillators is shown in Table 3 of Appendix A.2.

4.2 Results on the MuJoCo locomotion tasks

We evaluate the effectiveness of our method on the MuJoCo v4 locomotion tasks (ANT, HALFCHEE-
TAH, HOPPER, WALKER2D, SWIMMER) included in the Gymnasium v0.29.1 library (Towers et al.,
2023). We compare our approach against three established deep RL algorithms: Proximal Policy Op-
timization (PPO), Deep Deterministic Policy Gradients (DDPG), and Soft Actor-Critic (SAC). To
ensure a fair comparison, we adopt the hyperparameter settings from the original papers, except for
the swimmer task, where we fine-tuned the discount factor (y = 0.9999) according to Franceschetti
et al. (2022). Additionally, we also benchmark Augmented Random Search (ARS) which is a popu-
lation based algorithm that uses linear policies. Our choice of baselines includes one representative
example per algorithm category: PPO for on-policy, SAC for off-policy, ARS for population-based
methods and simple model-free baselines, and DDPG as a historical algorithm (many state-of-the-
art algorithms are based on it). We choose SAC (Haarnoja et al., 2019) because it performs well in

RLJ | RLC 2024

continuous control tasks (Huang et al., 2023), and it shares many components (including the policy
structure) with its newer and more complex variants. SAC and its variants, such as TQC (Kuznetsov
et al., 2020), REDQ (Chen et al., 2021) or DroQ (Hiraoka et al., 2022) are also the ones used in
the robotics community (Raffin et al., 2022; Smith et al., 2023). We use standard reward functions
provided by Gymnasium, except for ARS where we remove the alive bonus to match the results
from the original paper.

The RL agents are trained during one million steps. To have quantitative results, we replicate
each experiment 10 times with distinct random seeds. We follow the recommendations by Agarwal
et al. (2021) and report performances profiles, probability of improvements in Fig. 1 and aggregated
metrics with 95% confidence intervals in Fig. 2. We normalize the score over all environments using
a random policy for the minimum and the maximum performance of the open-loop oscillators.

1.00 —

0.75

Fraction of runs with score >t

0.50

—— Open Loop Algorithm X Algorithm Y
0.25 SAC Open Loop I ARS

—— PPO Open Loop I DpDpPG

—— DDPG

Open Loop | PPO
ARS

0.00 Open Loop SAC

00 02 04 06 08 10 12 14 02 03 04 05 0.6 0.7

Normalized Score (1) P(X >Y)

Figure 1: Performance profiles on the MuJoCo locomotion tasks (left) and probability of improve-
ments of the open-loop approach over baselines, with a 95% confidence interval.

Median QM
ARS I I
DDPG N I
PPO — -
SAC I I
Open Loop [| [|
0.6 1.2 1.8 24 0.6 1.2 1.8 2.4

Normalized Score

Figure 2: Metrics results on MuJoCo locomotion tasks using median and interquartile mean (IQM),
with a 95% confidence interval.

Performance. As seen in Figs. 1 and 2, the open-loop oscillators achieves respectable performance
across all five tasks, despite its minimalist design. In particular, it performs favorably against ARS
and DDPG, a simple baseline and a classic deep RL algorithm, and exhibits comparable performance
to PPO. Remarkably, this is accomplished with merely a dozen parameters, in contrast to the
thousands typically required by deep RL algorithms. Our results suggest that simple oscillators
can effectively compete with sophisticated RL methods for locomotion, and do so in an open-loop
fashion. It also shows the limits of the open-loop approach: the baseline does not reach the maximum
performance of SAC.

RLJ | RLC 2024

Table 1: Runtime comparison to train a policy on HALFCHEETAH, one million steps using a single
environment, no parallelization.

SAC PPO DDPG ARS ‘ Open-Loop
CPU GPU CPU GPU CPU GPU CPU GPU ‘ CPU GPU
Runtime (in min.) ‘ 80 30 10 14 60 25 5 N/A ‘ 2 N/A

Runtime. Comparing the runtime of the different algorithms', as presented in Table 1, underscores
the benefits of choosing simplicity over complexity. Notably, ARS requires only five minutes of CPU
time to train on a single environment for one million steps, while open-loop oscillators are twice
as fast. This efficiency is particularly advantageous when deploying policies on embedded systems
with limited computing resources. Moreover, both methods can be easily scaled using asynchronous
parallelization to further reduce training time. In contrast, more complex methods like SAC demand
a GPU to achieve reasonable runtimes (15 times slower than open-loop oscillators), even with the
aid of JIT compilation?.

@® OpenLoop
25 SAC

8 PPO
20 B DDPG

® ARS

Normalized Score
P &

s 3 %

il

10" 10° 10° 10" 10

Number of Parameters (log)

5

Figure 3: Parameter efficiency of the different algorithms. Results are presented with a 95% confi-
dence interval and score are normalized with respect to the open-loop baseline.

Parameter efficiency. As seen in Fig. 3, the open-loop oscillators really stand out for their
simplicity and performance with respect to the number of optimized parameters. On average, our
approach has 7x fewer parameters than ARS, 800x fewer than PPO and 27000x fewer than SAC.
This comparison highlights the importance of choosing an appropriate policy structure that delivers
satisfactory performance while minimizing complexity.

4.3 Robustness to sensor noise and failures

In this section, we assess the resilience of the trained agents from the previous section against sensor
noise, malfunctions and external perturbations (Dulac-Arnold et al., 2020; Seyde et al., 2021). To
study the impact of noisy sensors, we introduce Gaussian noise with varying intensities into one
sensor signal (specifically, the first index in the observation vector, the one that gives the position
of the end-effector). To investigate the robustness against sensor faults, we simulate two types of

I'We display the runtime for HALFCHEETAH only, the computation time for the other tasks is similar.
2The JAX implementation of SAC used in this study is four times faster than its PyTorch counterpart.

RLJ | RLC 2024

Robustness to Sensor Noise and Failures

3.0
B SAC

2.5 I SAC NOISE
© = OPEN LOOP
g 20 mms PPO
2 s B ARS
&7 B DDPG
(3]
€ 1.0
[s)
=2

|Ii [II i II hi. : Ml

i i * miniln
0.0 -+ T 1
No Noise or Failure o=0.25 o=05 Type | Type Il External Perturbation

Zero Value Constant Value

Figure 4: Robustness to sensor noise (with varying intensities), failures of Type I (all zeros) and II
(constant large value) and external disturbances. All results are presented with a 95% confidence
interval and score are normalized with respect to the open-loop baseline.

sensor failures: Type I failure involves outputting zero values for one sensor, while Type II failure
generates a constant value with a larger magnitude (we set this value to five in our experiments).
Finally, we evaluate the robustness to external disturbances by applying perturbations with a force
of 5N in randomly chosen directions with a probability of 5% (around 50 impulses per episode). By
examining how the agents perform under these scenarios, we can evaluate their ability to adapt to
imperfect sensory input and react to disturbances. We study the effect of randomization by also
training SAC with a Gaussian noise with intensity o = 0.2 on the first sensor (SAC NOISE in the
figure).

In absence of noise or failures, SAC excels over simple oscillators on most tasks, except for the
SWIMMER environment. However, as depicted in Fig. 4, SAC performance deteriorates rapidly when
exposed to noise or sensor malfunction. This is the case for the other RL algorithms, where ARS
and PPO are the most robust ones but still exhibit degraded performances. In contrast, open-loop
oscillators remain unaffected, except when exposed to external perturbations because they do not
rely on sensors. This highlights one of the primary advantages and limitations of open-loop control.

As shown by the performance of SAC trained with noise on the first sensor (SAC NOISE), it is
possible to mitigate the impact of sensor noise. This finding, together with the performance of the
open-loop controller, suggests that the first sensor is not essential for achieving good results in the
MuJoCo locomotion tasks. SAC with randomization on the first sensor has learned to disregard its
input, while SAC without randomization exhibits a high sensitivity to the value of this uninformative
sensor. This illustrates a vulnerability of DRL algorithms, which can be sensitive to useless inputs.

4.4 Simulation to Reality Transfer on an Elastic Quadruped

The open-loop approach offers a promising baseline for locomotion control on real robots, due
to its computational efficiency, robustness to sensor noise, and adequate performance. To assess
its potential for real-world applications, we investigate whether the results in simulation can be
transferred to a real quadruped robot equipped with serial elastic actuators®.

The experimental platform is a cat-sized quadruped robot with eight joints, similar to the ANT task in
MuJoCo, where motors are connected to the links via a linear torsional spring with constant stiffness
k = 2.75Nm/rad. To conduct our evaluation, we use a simulation of the robot in PyBullet (Coumans

3The results can also be seen in the video in the supplementary material.

RLJ | RLC 2024

Figure 5: Robotic quadruped with elastic actuators in simulation (left) and real hardware (right)

& Bai, 2016-2021), which includes a model of the elastic joints but excludes motor dynamics. The
task is to reach maximum forward speed: we define the reward as displacement along the desired axis
and limit each episode to five seconds of interaction. The agent receives the current joint positions
q and velocities ¢ as observation and commands desired joint positions ¢9° at a rate of 60Hz.

In this evaluation, we compare the open-loop approach against the top-performing algorithm from
Section 4.2, namely SAC. Both algorithms are allotted a budget of one million steps for training.
Importantly, we do not apply any randomization or task-specific techniques during the training
process. Our goal is to understand the strengths and weaknesses of RL with respect to the open-
loop baseline in a simulation-to-reality setting. We evaluate the learned policy from simulation on
the real robot for ten episodes.

Table 2: Results of simulation-to-reality transfer for the elastic quadruped locomotion task. We
report mean speed and standard error over ten test episodes. SAC performs well in simulation, but
fails to transfer to the real world.

SAC Open-Loop
Sim Real Sim Real
Mean speed (m/s) | 0.81 +/0.02 0.04 +/0.01 0.55 +/ 0.03 0.36 +/ 0.01

As shown in Table 2, SAC exhibits superior performance in simulation compared to the open-loop
oscillators (like in Section 4.2), with a mean speed of 0.81 m/s versus 0.55 m/s over ten runs.
However, upon closer examination, the policy learned by SAC outputs high-frequency commands
making it unlikely to transfer to the real robot — a common issue faced by RL algorithms (Raffin
et al., 2021b; Bellegarda & Ijspeert, 2022). When deployed on the real robot, the jerky motion
patterns translate into suboptimal performance (0.04 m/s), commands that can damage the motors,
and increased wear-and-tear.

In contrast, our open-loop oscillators, with fewer than 25 adjustable parameters, produce smooth out-
puts by design and demonstrate good performance on the real robot. The open-loop policy achieves
a mean speed of 0.36 m/s, the fastest walking gait recorded for this elastic quadruped (Lakatos
et al., 2018). While there is still a disparity between simulation and reality, the gap is significantly
narrower compared to the RL algorithm.

5 Discussion

An open-loop model-free baseline. We propose a simple, open-loop model-free baseline that
achieves satisfactory performance on standard locomotion tasks without requiring complex models
or extensive computational resources. While it does not outperform RL algorithms in simulation,
this approach has several advantages for real-world applications, including fast computation, ease of

RLJ | RLC 2024

deployment on embedded systems, smooth control outputs, and robustness to sensor noise. These
features help narrow the simulation-to-reality gap and avoid common issues associated with deep
RL algorithms, such as jerky motion patterns (Raffin et al., 2021b) or converging to a bang-bang
controller (Seyde et al., 2021). Our approach is specifically tailored to address locomotion tasks,
yet its simplicity does not limit its versatility. It can successfully tackle a wide array of locomotion
challenges and transfer to a real robot, with just a few tunable parameters, while remaining model-
free.

The cost of generality. Deep RL algorithms for continuous control often strive for generality by
employing a versatile neural network architecture as the policy. However, this pursuit of generality
comes at a price of specificity in the task design. Indeed, the reward function and action space must
be carefully crafted to solve the locomotion task and avoid solutions that hack the simulator but do
not transfer to the real hardware. Our study and other recent work (Iscen et al., 2018; Bellegarda &
Ijspeert, 2022; Raffin et al., 2022) suggest incorporating domain knowledge into the policy design.
Even minimal knowledge like simple oscillators, reduces the search space and the need for complex
algorithms or reward design.

RL for more complex locomotion scenarios. The locomotion tasks presented in this paper
may seem relatively simple compared to the more complex challenges that RL has tackled (Miki
et al., 2022). However, the MuJoCo environments have served as a benchmark for the continuous
control algorithms deployed on robots and are still widely used in both online and offline RL. It
is important to note that even SAC, which performs well in simulation, can perform sub-optimally
with simple environments like the swimmer task (Franceschetti et al., 2022) or the elastic quadruped
simulation-to-reality transfer, and be sensitive to uninformative sensors. We believe that understand-
ing the failures and limitations by providing an open-loop model-free baseline is more valuable than
marginally improving performance by adding new tricks to an already complex algorithm (Patterson
et al., 2023).

Unexpected results. While the success of the open-loop oscillators in the SWIMMER environment
is anticipated, their effectiveness in the WALKER, HOPPER or elastic quadruped environments is more
unexpected, as one might assume that feedback control or inverse kinematics would be necessary to
balance the robots or to learn a meaningful open-loop policy. While it is true that previous studies
have shown that periodic control is at the heart of locomotion (Ijspeert, 2008), we argue that the
required periodic motion can be surprisingly simple. Mania et al. (2018) have shown that simple
linear policies can be used for locomotion tasks. The present work goes a step further by reducing
the number of parameters by a factor of ten and removing the state as an input.

Exploiting robot natural dynamics. Our open-loop baseline reveals an intriguing insight: a sin-
gle frequency per phase (swing or stance) can be used across all joints for all considered tasks. This
observation resonates with recent research focused on exploiting the natural dynamics of robots, par-
ticularly using nonlinear modes that enable periodic motions with minimal actuation (Della Santina
et al., 2020; Albu-Schiffer & Della Santina, 2020; Albu-Schéffer & Sachtler, 2022). Our approach
could potentially identify periodic motions for locomotion while minimizing control effort, thus har-
nessing the inherent dynamics of the hardware.

Limitations Naturally, open-loop control alone is not a complete solution for locomotion challenges.
Indeed, by design, open-loop control is vulnerable to disturbances and cannot recover from potential
falls. In such cases, closing the loop with reinforcement learning becomes essential to adapt to
changing conditions, maintain stability or follow a desired goal. A hybrid approach that integrates
the strengths of feedforward (open-loop) and feedback (closed-loop) control offers a middle ground,
as seen in various engineering domains (Goodwin et al., 2000; Astrom & Murray, 2008; Della Santina
et al., 2017). By combining the speed and noise resilience of open-loop control with the adaptability
of closed-loop control, it enables reactive and goal-oriented locomotion. Prior studies have explored
this combination (Iscen et al., 2018; Bellegarda & Ijspeert, 2022; Raffin et al., 2022), but our research
simplifies the feedforward formulation and eliminates the need for inverse kinematics or predefined
gaits.

RLJ | RLC 2024

Future work. While our approach generates desired joint positions using oscillators without relying
on the robot state, a PD controller is still required in simulation to convert these positions into torque
commands. We consider this requirement as part of the environment, since a position interface is
usually provided when considering real robotic applications. Furthermore, the generated torques
appear to be periodic, suggesting that the PD controller could be replaced by additional oscillators
(additional harmonic terms). While this possibility is worth exploring, we focus on simplicity in our
current work, using a minimal number of parameters, and defer this endeavor to future research.

Reproducibility Statement

We provide a minimal standalone code (35 lines of Python code) in the Appendix (Fig. 6) that
allows to solve the SWIMMER task using open-loop oscillators. The code to reproduce the main
experiments is provided in the supplementary material. The search space and details for optimizing
the oscillators parameters are given in Appendix A.2.

Acknowledgments

We thank Ragip Volkan Tatlikazan for his help with the initial experiments.

This work was supported by the EU’s H2020 Research and Innovation Programme under grant num-
ber 835284 (M-Runners) and by ITECH R&D programs of MOTIE/KEIT under Grant 20026194.

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Op-
tuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
19, pp. 2623-2631, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362016.

Alin Albu-Schéaffer and Cosimo Della Santina. A review on nonlinear modes in conservative mechan-
ical systems. Annual Reviews in Control, 50:49-71, 2020.

Alin Albu-Schéffer and Arne Sachtler. What can algebraic topology and differential geometry teach
us about intrinsic dynamics and global behavior of robots? In The International Symposium of
Robotics Research, pp. 468—-484. Springer, 2022.

Karl Johan Astrom and Richard M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, USA, 2008. ISBN 0691135762.

G. Bellegarda and A. J. Ijspeert. CPG-RL: Learning central pattern generators for quadruped
locomotion. IEEE Robotics and Automation Letters, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double g-learning;:
Learning fast without a model. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=AY8zfZm0tDd.

Avis H Cohen and Peter Wallén. The neuronal correlate of locomotion in fish: “fictive swimming”
induced in an in vitro preparation of the lamprey spinal cord. Ezperimental brain research, 41(1):
11-18, 1980.

http://github.com/google/jax
http://github.com/google/jax
https://openreview.net/forum?id=AY8zfZm0tDd

RLJ | RLC 2024

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling exploration and ex-
ploitation in deep reinforcement learning algorithms. In International conference on machine

learning, pp. 1039-1048. PMLR, 2018.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016-2021.

Alessandro Crespi and Auke Jan Ijspeert. Online optimization of swimming and crawling in an
amphibious snake robot. IEEE Transactions on Robotics, 24(1):75-87, 2008.

Fred Delcomyn. Neural basis of rhythmic behavior in animals. Science, 210(4469):492-498, 1980.

Cosimo Della Santina, Matteo Bianchi, Giorgio Grioli, Franco Angelini, Manuel Catalano, Manolo
Garabini, and Antonio Bicchi. Controlling soft robots: balancing feedback and feedforward ele-
ments. IEEE Robotics €& Automation Magazine, 24(3):75-83, 2017.

Cosimo Della Santina, Dominic Lakatos, Antonio Bicchi, and Alin Albu-Schaeffer. Using nonlinear
normal modes for execution of efficient cyclic motions in articulated soft robots. In International
Symposium on FExperimental Robotics, pp. 566—575. Springer, 2020.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learning.
arXiv preprint arXiv:2008.11881, 2020.

Maél Franceschetti, Coline Lacoux, Ryan Ohouens, Antonin Raffin, and Olivier Sigaud. Making
reinforcement learning work on swimmer. arXiv preprint arXiv:2208.07587, 2022.

Graham C. Goodwin, Stefan F. Graebe, and Mario E. Salgado. Control System Design. Prentice
Hall PTR, USA, 1st edition, 2000. ISBN 0139586539.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning
to walk via deep reinforcement learning. Robotics: Science and Systems (RSS), 15:11, 2019.

Nikolaus Hansen. Benchmarking a bi-population cma-es on the bbob-2009 function testbed. In
Proceedings of the 11th annual conference companion on genetic and evolutionary computation
conference: late breaking papers, pp. 2389-2396, 2009.

Nikolaus Hansen, Sibylle D Miiller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Ewvolutionary
computation, 11(1):1-18, 2003.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and FEighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAT18/TAAT18/EAAT18. AAAT Press, 2018. ISBN 978-1-57735-800-8.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout g-functions for doubly efficient reinforcement learning. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=xCVJMsPv3RT.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. In ICLR Blog Track, 2022.
URL https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.

Shengyi Huang, Quentin Gallouédec, Florian Felten, Antonin Raffin, Rousslan Fernand Julien Dossa,
Yanxiao Zhao, Ryan Sullivan, Viktor Makoviychuk, Denys Makoviichuk, Cyril Roumégous, Jiayi
Weng, Chufan Chen, Masudur Rahman, Jodo G. M. Aratjo, Guorui Quan, Daniel Tan, Timo
Klein, Rujikorn Charakorn, Mark Towers, Yann Berthelot, Kinal Mehta, Dipam Chakraborty,
Arjun KG, Valentin Charraut, Chang Ye, Zichen Liu, Lucas N. Alegre, Jongwook Choi, and Brent
Yi. openrlbenchmark, 2023. URL https://github.com/openrlbenchmark/openrlbenchmark.

http://pybullet.org
https://openreview.net/forum?id=xCVJMsPv3RT
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://github.com/openrlbenchmark/openrlbenchmark

RLJ | RLC 2024

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun,
and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science Robotics,
4(26):eaaub872, 2019.

Auke Jan Ijspeert. Central pattern generators for locomotion control in animals and robots: A
review. Neural Networks, 21(4):642-653, 2008. ISSN 0893-6080. Robotics and Neuroscience.

Atil Iscen, Adrian Agogino, Vytas SunSpiral, and Kagan Tumer. Controlling tensegrity robots
through evolution. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’13, pp. 1293-1300, New York, NY, USA, 2013. Association for Computing
Machinery. ISBN 9781450319638. doi: 10.1145/2463372.2463525. URL https://doi.org/10.
1145/2463372.2463525

Atil Iscen, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent

Vanhoucke. Policies modulating trajectory generators. In Conference on Robot Learning, pp. 916—
926. PMLR, 2018.

Nate Kohl and Peter Stone. Machine learning for fast quadrupedal locomotion. In AAAI, volume 4,
pp. 611-616, 2004.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556-5566. PMLR, 2020.

Dominic Lakatos, Kai Ploeger, Florian Loeffl, Daniel Seidel, Florian Schmidt, Thomas Gumpert,
Freia John, Torsten Bertram, and Alin Albu-Schéffer. Dynamic locomotion gaits of a compliantly
actuated quadruped with slip-like articulated legs embodied in the mechanical design. IEEE
Robotics and Automation Letters, 3(4):3908-3915, 2018.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter.

Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7
(62):eabk2822, 2022.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in rein-
forcement learning. arXiv preprint arXiv:2304.01315, 2023.

Antonin Raffin. Rl baselines3 zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1-8, 2021a.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning.
In Conference on Robot Learning, 2021b.

Antonin Raffin, Daniel Seidel, Jens Kober, Alin Albu-Schéffer, Jodo Silvério, and Freek Stulp.
Learning to exploit elastic actuators for quadruped locomotion. arXiv preprint arXiv:2209.07171,
2022.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, and Sham M Kakade. Towards general-
ization and simplicity in continuous control. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper_files/paper/2017/file/9ddb9dd5d8aee9a76bf217a2a3c54833-Paper. pdf.

https://doi.org/10.1145/2463372.2463525
https://doi.org/10.1145/2463372.2463525
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ddb9dd5d8aee9a76bf217a2a3c54833-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ddb9dd5d8aee9a76bf217a2a3c54833-Paper.pdf

RLJ | RLC 2024

Ludovic Righetti, Jonas Buchli, and Auke Jan Ijspeert. Dynamic hebbian learning in adaptive
frequency oscillators. Physica D: Nonlinear Phenomena, 216(2):269-281, 2006.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Waulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control
with bernoulli policies. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=9BvDIW6_gxZ.

Laura Smith, Ilya Kostrikov, and Sergey Levine. Demonstrating a walk in the park: Learning to
walk in 20 minutes with model-free reinforcement learning. Robotics: Science and Systems (RSS)
Demo, 2(3):4, 2023.

Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. Autonomous drone racing
with deep reinforcement learning. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1205-1212. IEEE, 2021.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv preprint
arXiv:1804.10332, 2018.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
2023. URL https://zenodo.org/record/8127025.

Yuxiang Yang, Tingnan Zhang, Erwin Coumans, Jie Tan, and Byron Boots. Fast and efficient
locomotion via learned gait transitions. In Conference on Robot Learning, pp. 773-783. PMLR,
2022.

https://openreview.net/forum?id=9BvDIW6_qxZ
https://openreview.net/forum?id=9BvDIW6_qxZ
https://zenodo.org/record/8127025

RLJ | RLC 2024

A Appendix

A.1 Standalone Code for the Swimmer Task

gymnasium as gym
numpy as np
gymnasium.envs.mujoco.mujoco_env MujocoEnv

env gym make ("Swimmer-v4", render_mode="human")

env = gym.wrappers.RecordEpisodeStatistics(env)
mujoco_env = env.unwrapped

n_joints 2

assert isinstance(mujoco_env, MujocoEnv)

kp, kd 10, 0.5
t, 0.0, env.reset(seed=0)

omega np.pi * 0.62 * np.ones(n_joints)
phase np.pi * np.array([0.00, 0.95])

while True:
env.render ()

desired_gpos = np.sin(omega * t + phase)

desired_torques = (
kp * (desired_gpos - mujoco_env.data.qgpos[-n_joints:])
kd * mujoco_env.data.qvel[-n_joints:]
)
desired_torques = np.clip(desired_torques, -1.0, 1.0)
_, reward, terminated, truncated, info env.step(desired_torques)
t mujoco_env.dt

if terminated truncated:
print (f"Episode return: {float(info['episode']l['r']):.2f}")
t, _ 0.0, env.reset()

Figure 6: Minimal code to solve the SWIMMER environment using open-loop oscillators (highlighted
in black). Code was tested with Gymnasium v0.29.1, MuJoCo v2.3.7 and Python 3.9.

RLJ | RLC 2024

A.2 Open-Loop Oscillators search space

Table 3: Search space for the oscillators parameters. We set ¢y = 0 by convention, use a step-
size dt = 0.001 for the integration of the oscillators equations and have a population size of 30 for
CMAES. U(—1,1) means that the value is sampled from a uniform distribution between —1 and 1.
For the SWIMMER task, a constant amplitude and offset are used.

Amplitude a; Offset b; Phase Shift ¢; Frequencies Wgwing/stance

Ant-vd U-1,1 UL 2r-uU(0,1) 21 - U(0.4,2)
HalfCheetah-vd | 4(—2,2) U(-1,1) 27 U(0,1) 21 - U(0.4,5)
Hopper-v4 U-1,1) 0.0 27 -U(0,1) 27 -U(0.4,5)
Swimmer-v4 1.0 0.0 27 - U(0,1) 27 -U(0.4,2)
Walker2d-v4 U-1,1) UCL1) 27-U(0,1) 27 - U(0.4, 6)
Quadruped Uu-1,1) U-1,1) 27 - U(0,1) 2w -U(0.4,2)

Table 4: Proportional (k,) and derivative (k4) gains of the PD controller for each environment.

kp kq
Ant-v4 1.0 0.05
HalfCheetah-v4 | 1.0 0.05
Hopper-v4 10.0 0.5
Swimmer-v4 7.0 0.7
Walker2d-v4 10.0 0.5

A.3 Ablation Study

In this section, we examine the impact of design choices of Eq. (1) on performance. In particular,
we investigate the influence of having phase-dependent frequencies (we set Wswing = Wstance = W)
and the importance of having phase shifts ¢; between oscillators (we set ¢; = 0). The results are
shown in Figs. 7 and 8 and table 5.

The equations of the different variants of Eq. (1) are:

q?es(t) =a;- sin(w -t \P,) +b; No Wswing
@50 = 0, sm@(0) 15 Nogp, ®
q?es(t) = a; - sin(w . t) + bi No Pi No Wswing

where 0;(t) is the same as in Eq. (1).

For the HALFCHEETAH, SWIMMER and ANT tasks, having a single frequency w is sufficient, while
it is critical to have phase-dependent frequencies for the HOPPER environment. The phase shifts ¢;
are needed when all joints cannot be synchronous (as in the SWIMMER task). For the quadruped,
these phase shifts ¢, represent the gait and encode symmetries between the legs.

RLJ | RLC 2024

Fraction of runs with score > 7

1.00

0.75

0.25

0.00

—— Open-Loop Full

— No Wswing
— Noy;
No wWswing No ¢;

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Normalized Score (7)

Figure 7: Performance profiles on the MuJoCo locomotion tasks using different variants of the open-
loop approach, with a 95% confidence interval.

Median IQM
No waing No ; E— —
No ;, IE— [|
No Wswing I |
Open-Loop Full T — []
0.7 0.8 0.9 0.7 0.8 0.9

Normalized Score

Figure 8: Metrics results on MuJoCo locomotion tasks for the different variants using median and
interquartile mean (IQM), with a 95% confidence interval.

Table 5: Results on MuJoCo locomotion tasks (mean and standard error are displayed) with
different variant of the approach.

Open-Loop
No ¢; No Wswing No ¢; No Wswing Full
Ant-v4 1167 +/- 3 1173 +/-3 1239 +4/-8 1235 +/-6
HalfCheetah-v4 2221 +/- 27 2245 +/- 30 2532 +/- 42 2400 +/- 31
Hopper-v4 929 +/-9 785 +/- 28 986 +/-7 1241 +/- 30
Swimmer-v4 -119 +/- 8 -82 +/- 6 356 +/- 0 356 +/- 0

Walker2d-v4 1484 +/- 36 1482 +/- 34 1140 +/- 32 1508 +/- 27

RLJ | RLC 2024

A.4 Raw results on MuJoCo

Table 6: Results on MuJoCo locomotion tasks (mean and standard error are displayed).

Environments SAC PPO DDPG ARS ‘ Open-Loop

1 x budget 3 x budget
Ant-v4 4514 +/- 352 796 +/- 116 265 +/- 210 1241 +/- 25 1235 +/-6 2130 +/- 120
HalfCheetah-v4 | 10538 +/- 286 1770 +/- 254 11267 +/- 317 2195 +/- 272 | 2400 +/- 31 4003 +/- 100
Hopper-v4 4039 +/- 118 1817 +/- 312 1240 +/- 124 2538 +/- 253 | 1241 +/- 30 2056 +/- 121
Swimmer-v4 240 +/- 39 334 +/- 18 25 +/-4 267 +/- 31 356 +/- 0 357 +/-1
Walker-v4 3192 +/- 184 1817 +/- 312 563 +/- 64 444 +/- 10 | 1508 +/- 261 2500 +/- 461

