Raffin, Antonin und Sigaud, Olivier und Kober, Jens und Albu-Schäffer, Alin Olimpiu und Silverio, Joao und Stulp, Freek (2024) An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks. Reinforcement Learning Journal (RLJ), 1 (1), Seiten 92-107. Reinforcement Learning Conference. doi: 10.5281/zenodo.13899776. ISSN 2996-8569.
PDF
- Verlagsversion (veröffentlichte Fassung)
928kB |
Offizielle URL: https://rlj.cs.umass.edu/2024/papers/Paper18.html
Kurzfassung
In search of a simple baseline for Deep Reinforcement Learning in locomotion tasks, we propose a model-free open-loop strategy. By leveraging prior knowledge and the elegance of simple oscillators to generate periodic joint motions, it achieves respectable performance in five different locomotion environments, with a number of tunable parameters that is a tiny fraction of the thousands typically required by DRL algorithms. We conduct two additional experiments using open-loop oscillators to identify current shortcomings of these algorithms. Our results show that, compared to the baseline, DRL is more prone to performance degradation when exposed to sensor noise or failure. Furthermore, we demonstrate a successful transfer from simulation to reality using an elastic quadruped, where RL fails without randomization or reward engineering. Overall, the proposed baseline and associated experiments highlight the existing limitations of DRL for robotic applications, provide insights on how to address them, and encourage reflection on the costs of complexity and generality.
elib-URL des Eintrags: | https://elib.dlr.de/207306/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Zusätzliche Informationen: | This work was also supported by ITECH R&D programs of MOTIE/KEIT under Grant 20026194 | ||||||||||||||||||||||||||||
Titel: | An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 14 September 2024 | ||||||||||||||||||||||||||||
Erschienen in: | Reinforcement Learning Journal (RLJ) | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Band: | 1 | ||||||||||||||||||||||||||||
DOI: | 10.5281/zenodo.13899776 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 92-107 | ||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||
Verlag: | Reinforcement Learning Conference | ||||||||||||||||||||||||||||
ISSN: | 2996-8569 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | reinforcement learning, open loop, benchmark | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||||||||||||||
Hinterlegt von: | Raffin, Antonin | ||||||||||||||||||||||||||||
Hinterlegt am: | 14 Okt 2024 09:49 | ||||||||||||||||||||||||||||
Letzte Änderung: | 14 Okt 2024 09:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags