Lehmann, Nils and Gottschling, Nina Maria and Depeweg, Stefan and Nalisnick, Eric (2024) Uncertainty Aware Tropical Cyclone Wind Speed Estimation From Satellite Data. In: Machine Learning for Remote Sensing (ML4RS), ICLR 2024, pp. 1-31. Machine Learning for Remote Sensing (ML4RS), ICLR 2024, 2024-05-11, Wien, Österreich.
PDF
2MB |
Official URL: https://ml-for-rs.github.io/iclr2024/camera_ready/papers/21.pdf
Abstract
Deep neural networks (DNNs) have been successfully applied to earth observation (EO) data and opened new research avenues. Despite the theoretical and practical advances of these techniques, DNNs are still considered black box tools and by default are designed to give point predictions. However, the majority of EO applications demand reliable uncertainty estimates that can support practitioners in critical decision making tasks. This work provides a theoretical and quantitative comparison of existing uncertainty quantification methods for DNNs applied to the task of wind speed estimation in satellite imagery of tropical cyclones. We provide a detailed evaluation of predictive uncertainty estimates from state-of-the-art uncertainty quantification (UQ) methods for DNNs. We find that predictive uncertainties can be utilized to further improve accuracy and analyze the predictive uncertainties of different methods across storm categories.
Item URL in elib: | https://elib.dlr.de/205424/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Uncertainty Aware Tropical Cyclone Wind Speed Estimation From Satellite Data | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 11 May 2024 | ||||||||||||||||||||
Journal or Publication Title: | Machine Learning for Remote Sensing (ML4RS), ICLR 2024 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Page Range: | pp. 1-31 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Künstliche Intelligenz, Quantifizierung von Unsicherheiten | ||||||||||||||||||||
Event Title: | Machine Learning for Remote Sensing (ML4RS), ICLR 2024 | ||||||||||||||||||||
Event Location: | Wien, Österreich | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Date: | 11 May 2024 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - Big Data and AI for decision support | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Gottschling, Nina Maria | ||||||||||||||||||||
Deposited On: | 25 Jul 2024 13:50 | ||||||||||||||||||||
Last Modified: | 13 Aug 2024 16:45 |
Repository Staff Only: item control page