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ABSTRACT

Deep neural networks (DNNs) have been successfully applied to earth observation
(EO) data and opened new research avenues. Despite the theoretical and practi-
cal advances of these techniques, DNNs are still considered black box tools and
by default are designed to give point predictions. However, the majority of EO
applications demand reliable uncertainty estimates that can support practitioners
in critical decision making tasks. This work provides a theoretical and quantita-
tive comparison of existing uncertainty quantification methods for DNNs applied
to the task of wind speed estimation in satellite imagery of tropical cyclones. We
provide a detailed evaluation of predictive uncertainty estimates from state-of-the-
art uncertainty quantification (UQ) methods for DNNs. We find that predictive un-
certainties can be utilized to further improve accuracy and analyze the predictive
uncertainties of different methods across storm categories.

1 INTRODUCTION

The tremendous success of Deep Learning approaches to natural images is increasingly being ex-
plored on EO data that is becoming available in ever greater quantities (Tuia et al., 2023). Due to
their often vast global coverage, EO data is an indispensable source of information for assessing the
state of our planet as well as extreme events that are increasing in frequency and intensity (Kikstra
et al., 2022). One category of such extreme events are tropical cyclones. Tropical cyclones - in
the US alone - have lead to 6,789 deaths and caused financial damages amounting to a staggering
$1,333.6 billion between 1980-2022, with an average instance cost of $22.2 billion and covering
53.9% of all costs caused by US extreme weather disasters (Smith, 2020). Although, satellite data
and other in-situ measurements are often available, reliable wind speed estimation remains a chal-
lenging task. For example in October 2023, hurricane Otis underwent a rapid intensification of
almost 80 kts in 12 hours before causing devastating damage in the city Acapulco.1 The failure of
satellite based wind speed estimation methods (Krämer, 2023) and the need for improving these has
been highlighted after this tropical cyclone2. Moreover, rapidly intensifying storms near coastlines
have shown a trend to become more frequent (Li et al., 2023) and, hence, this demonstrates the need
for improved monitoring of wind speeds and better prediction methods to yield improved warning
systems. Because data to train such prediction methods can be limited and unevenly distributed,
making a perfect prediction is not always possible. However, based on the general viability of
DNNs for predicting and estimating wind speeds from satellite data (see e.g. Pradhan et al. (2017)),
one possible approach is to equip DNNs with modern uncertainty-quantification (UQ) methods to
enhance the quality of predictions and mitigate data imbalances, as well as label and input noise.
This uncertainty is important for EO applications, as in practice, a prediction model is only an el-
ement of a complex decision making process. For instance, the confidence in the prediction of a

1”Hurricane Otis Causes Catastrophic Damage in Acapulco, Mexico”, NOAA accessed 31.01.2024.
2”Hurricane Otis smashed into Mexico and broke records. Why did no one see it coming?” accessed

31.01.2024.

1

https://www.nesdis.noaa.gov/news/hurricane-otis-causes-catastrophic-damage-acapulco-mexico
https://www.science.org/content/article/hurricane-otis-smashed-mexico-and-broke-records-why-did-no-one-see-it-coming


ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop

tropical cyclone category is a key factor for deciding on public safety measures. This paper has the
following contribution: Using the dataset proposed in Maskey et al. (2021), we show that equipping
DNNs with predictive uncertainty can be utilized to further improve accuracy via selective predic-
tion based on predictive uncertainty. To the best of our knowledge no previous related work (see
Section 1.1) considered an evaluation of uncertainty aware regression models in this domain. We
compare state-of-the-art UQ methods, (see Section 3), and demonstrate differences across storm
categories according to the Saffir-Simpson scale and different dataset splits. We show that UQ can
improve real-time wind speed estimation and thus outline the way to apply UQ to DNN forecasting
models by a detailed assessment of existing UQ methods.

1.1 RELATED WORK

Several works have tackled the task of applying Deep Learning methods to tropical cyclone intensity
estimation as a classification (Wimmers et al., 2019) or regression (Chen et al., 2019; Ma et al.,
2024; Zhang et al., 2021) task. Based on a dataset of 25k images of infrared satellite imagery
matched with storm data from the HURDAT2 database (Landsea & Franklin, 2013), Pradhan et al.
(2017) train a CNN architecture for storm-category classification, as well es wind-speed estimation,
and demonstrate improvements over previously applied statistical techniques like Advanced Dvorak
Technique (ADT) (Piñeros et al., 2011), and Deviation-Angle Variance Technique (DAVT) (Ritchie
et al., 2014). Maskey et al. (2020) improve the dataset quality and size by using GEOS Geostationary
Operational Environmental Satellite (GEOS) and demonstrate a live production system. Our work
is mostly comparable to Maskey et al. (2020) as we use their published dataset that was part of the
Driven Data Challenge (Maskey et al., 2021).

2 TROPICAL CYCLONE DATASET

Dataset name Satellite Spatial Res Temporal Res Train Samples Val Samples Test Samples

Tropical Cyclone GOES 2km 15 min 53k 11k 43k

Table 1: Dataset Overview

The imagery represents single channel long-wave infrared measurements captured every 15 minutes,
at 10.3 microns, that can capture the spatial structure of the storm in terms of measurements of the
brightness temperature, as seen in Figure 1b. For more details about dataset collection, we refer the
reader to the methodology section of (Maskey et al., 2020). We resize the images to 224x224 pixels
and employ common image augmentations during training. We follow the datasplits by storm of the
challenge and use dataloading available through the TorchGeo library (Stewart et al., 2022), which
yields 53k training, 11k validation and 43k test samples. As Figure 1a shows, the distribution of
targets is highly skewed with the majority of samples falling beneath hurricane categories defined
by the Saffir Simpson Scale, Simpson (1974). We conduct experiments with the full target range but
also subsets that only contain hurricane categories.

(a) Label distribution and storm categories. (b) Dataset samples

Figure 1: Visualization of Tropical Cyclone Dataset.

3 METHODS

Given a set of input-target pairs Dtrain = {(xi, yi)}Ni=1, (xi, yi), the task of the neural network is
to predict a target y⋆ ∈ Y given an input x⋆ ∈ X . The input is a triplet of monochrome satellite
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images at time steps [t − 2, t − 1, t] and the target is the maximum sustained wind speed in knots
(kts) at time step t. 3 This is sometimes referred to as ”nowcasting”. For this task, we compare five
classes of UQ methods: deterministic, ensemble, Bayesian, quantile and diffusion based methods.
Firstly, deterministic UQ methods use a DNN, fθ : X → P(Y ), that map inputs x to the parameters
of a probability distribution fθ(x

⋆) = pθ(x
⋆) ∈ P(Y ). These include Deep Evidential Networks

(DER) Amini et al. (2020), where we use the correction proposed by Meinert et al. (2023), and Mean
Variance Networks (MVE) (Nix & Weigend, 1994) which output the mean and standard deviation
of a Gaussian distribution fMVE

θ (x⋆) = (µθ(x
⋆), σθ(x

⋆)). Secondly, the broadly considered state-
of-the-art method Deep Ensembles (DeepEnsembles) proposed by Lakshminarayanan et al. (2017)
utilizes an ensemble over MVE networks. Thirdly, Bayesian methods aim at modelling a distri-
bution over the network parameters and are commonly used to approximate the first and second
moment of a marginalized distribution. These include Bayesian Neural Networks with Variational
Inference (BNN VI ELBO) Blundell et al. (2015), MC-Dropout (MCDropout) Gal & Ghahra-
mani (2016), the Laplace Approximation (Laplace) Ritter et al. (2018)Daxberger et al. (2021) and
SWAG Maddox et al. (2019) with partially stochastic variants presented in Sharma et al. (2023).
Gaussian Process based methods model a distribution over functions that also approximate the fist
and second moment of the marginalized distribution. These include Deep Kernel Learning (DKL)
Wilson et al. (2016) and an extension thereof Deterministic Uncertainty Estimation (DUE) (van
Amersfoort et al., 2021). Fourthly, quantile based models fθ : X → Y n that map to n quantiles,
fθ(x

⋆) = (q1(x
⋆), ..., qn(x

⋆)) ∈ Y n, such as Quantile Regression (Quantile Regression) and the
conformalized version thereof (ConformalQR) suggested by Romano et al. (2019). Lastly, we also
consider a diffusion model (CARD) as introduced by Han et al. (2022). A detailed description of
the methods is provided in the supplementary material. Depending on underlying assumptions UQ,
methods are regarded to express two different types of uncertainties (Hüllermeier & Waegeman,
2021). Aleatoric uncertainty refers to inherent randomness in the data and epistemic uncertainty
to a lack of knowledge in the modelling process. From a statistical perspective Gruber et al. (2023)
allude that such a distinction is often not possible. Thus, we focus solely on predictive uncertainty.

Evaluation methodology: In addition to standard metrics for regression, such as root-mean-squared
error (RMSE), we utilize proper scoring rules such as the negative log-likelihood (NLL) and contin-
uous ranked probability score (CRPS) (Gneiting & Raftery, 2007) and the mean absolute calibration
error (MACE). To evaluate the merit of UQ methods for decision making, we use selective predic-
tion as a downstream task. Here, samples with a predictive uncertainty above a given threshold are
omitted from prediction and can be referred to an expert or other estimation methods. Based on the
Saffir-Simpson Scale (Simpson, 1974) bin intervals, we chose the threshold such that it would on
average shift the category of the regression prediction. Hence, we take the threshold to be the mean
over categories of the wind speed interval from categories 1 to 4, which is approximately 9 kts. We
experiment with different threshold choices which are reported in the supplementary material and in
Fig. 3b. All methods have an ImageNet pretrained ResNet-18 (He et al., 2016) backbone available
frome the timm library (Wightman, 2019). Metrics are computed with the UQ-toolbox by Chung
et al. (2021).4

4 RESULTS

We show fine grained results for storm categories Tropical Depression (TD), and Hurricane cate-
gories 1, 3, and 5 for better visualization. Additional results for different dataset splits and thresholds
including all categories are included in the supplementary material.

How effective is selective prediction? As Table 2 shows, selective prediction - enabled through
uncertainy aware models - can yield significant accuracy improvements for selected methods. The
best performing methods obtain an RMSE between 9.27− 10.95 kts, yet the accuracy improvement
obtained by selective prediction varies significantly. However, the coverage - the remaining samples
after selective prediction - also varies considerably. For higher hurricane categories, accuracy and
uncertainty metrics worsen substantially as shown in Figure 2 and different ranges of improvement
are obtained by selective prediction, as shown in the supplementary material. When averaging

3We choose this input image composition, as it was utilized in the winning solution of the challenge (Maskey
et al., 2021), which improved reported accuracy significantly compared to (Maskey et al., 2020).

4Code available under https://github.com/nilsleh/tropical cyclone uq
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UQ group Method RMSE ↓ RMSE ∆ ↑ Coverage ↑ CRPS ↓ NLL ↓ MACE ↓
None Deterministic 10.50 0.00 1.00 NaN NaN NaN

Deterministic MVE 9.95 2.10 0.62 5.31 3.64 0.04
DER 10.14 NaN 0.00 10.07 4.60 0.35

Quantile QR 10.95 3.28 0.44 5.82 3.73 0.01
CQR 10.95 6.18 0.08 5.98 3.79 0.10

Ensemble Deep Ensemble 16.19 0.00 0.00 8.83 4.15 0.05

Bayesian

MC Dropout 10.23 6.12 0.00 5.78 3.81 0.16
SWAG 9.78 5.42 0.11 5.40 3.71 0.13
Laplace 10.53 0.00 0.00 7.96 4.31 0.28
BNN VI ELBO 9.27 0.00 1.00 6.28 52.60 0.41
DKL 12.59 0.00 0.00 6.84 3.95 0.06
DUE 9.95 0.00 0.00 5.43 3.73 0.08

Diffusion CARD 10.86 1.50 0.60 5.84 3.92 0.05

Table 2: Evaluation Results on test set. RMSE ∆ shows the improvement after selective prediction,
where 0.00 indicates that all samples were withdrawn, while Coverage denotes the fraction of re-
maining samples that were not omitted. Threshold 9 kts.

Figure 2: Uncertainty Metrics over different storm categories. We find that VI BNNs under cover
(e.g. see proportion in interval), DER tends to over cover (e.g. see sharpness), with many other
methods performing in between.

over all categories Table 2 shows that SWAG and CQR obtain relatively low RMSE after seletive
prediction, 4.36 and 4.77 kts, while maintaining a coverage of 11% and 8%.

Error and Predictive Uncertainty across Categories: We evaluate the predictive uncertainty
across storm categories with three criteria: the correlation between predictive uncertainty and MAE,
sharpness, and MACE. Fig. 2, on the bottom right, shows the correlation is best for the TD case and
is fairly consistent for most models. On the higher categories H3 and H5 we observe a larger spread
between models, with SWAG, MVE, DKL and DER demonstrating higher correlation values. Ac-
curate predictive uncertainties need to be both well calibrated - obtain a low MACE - and be sharp
Kuleshov et al. (2018). MVE, SWAG, QR and CQR most closely fulfill this criteria. In contrast,
Laplace and MC-Dropout obtain a low MACE on higher categories but are also less sharp and show
lower correlation. Fig. 3a gives a ”qualitative” example of MVE predictions for a selected storm
track which generally follows the trend of the underlying target. Samples with a predictive uncer-
tainty that exceeds the selective prediction threshold could be referred to an expert or postprocessing
step.
4.1 DETAILED DISCUSSION PER UQ METHOD GROUP

Deterministic UQ methods: Table 2 shows MVE obtains an RMSE of 7.85 kts after selective
prediction while maintaining a coverage of 62% and the lowest scoring rules, NLL and CRPS, which
may be correlated to the fact that the loss objective is the NLL. At the same time MVE remains well
calibrated compared to all other methods. Table 1 in the Appendix, Section 1, shows that MVE
also obtains a comparably low RMSE and NLL per category. DER obtains a higher RMSE and
no improvement with selective prediction, Table 2. This may be due to the fact that the predicted
standard deviations of DER are relatively high compared to the selective prediction threshold, which
is reflected in the sharpness accross storm categories in Figure 2. Quantile based UQ methods:
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(a) MVE prediction Example with a visualized thresh-
old of 9 kts.

(b) DUE Prediction Example with a visualized thresh-
old of 12 kts.

Figure 3: Predictive Uncertainty Examples. Note that models under our setup do not have a concept
of time, we merely combine individual nowcasting predictions into a time-series. Red shaded areas
exceeding blue areas indicate samples that would be omitted during selective prediction. Figure
inspired by Zhang et al. (2019).

CQR obtains higher improvements with selective prediction than QR, see Table 2, which is due to
conformalization of quantiles and the resulting shift in predictive uncertainty. Yet this comes at the
cost of a significantly lower coverage of CQR after selective prediction with only 8% compared
to 44% for QR. Ensemble methods: Table 2 shows that overall Deep Ensembles obtain a higher
RMSE than all other methods and also a significantly higher RMSE on category 5 cyclones, see
Figure 2. Although Deep Ensembles are considered state-of-the-art, Seligmann et al. (2024) also
find that they do not perform best at every UQ task. As for DER the predictive uncertainty of Deep
Ensembles is larger than the selective prediction threshold, resulting in no improvement in RMSE.
However, choosing a different threshold may result in accuracy improvements. We hypothesize
that the variance of ensemble members might not be large enough and instead have converged to
similar solutions, which implies that the ensemble members have similar biases. Bayesian methods:
MC Dropout obtains an RMSE improvement for selective prediction, resulting in 4.11 kts at the
cost of a coverage of approximately 0 %. This means that after selective predictions almost no
samples remain, potentially adapting the threshold may result in improvements. SWAG obtains
significant improvements with selective prediction at the cost of a low coverage of 11% and obtains
relatively low CRPS and NLL as well as MACE averaged over categories, see Table 2, as well as
per category, Figure 2. This indicates a good fit, however the coverage after selective prediction may
be improved with a different threshold. Laplace obtains no improvement with selective prediction
and interestingly also has a constant sharpness across categories as Figure 2 shows. This may be
due to the fact that the Laplace approximation uses a second order Taylor expansion with respect to
the model parameters of the loss and does not take into account variances in the data to construct a
Gaussian approximation to the posterior weight distribution. BNN VI ELBO interestingly obtains
the lowest RMSE per category and overall, Table 1 in the Appendix, Section 1, which indicates
a good fit of the mean prediction. However, the predictive uncertainties are relatively small as
the low sharpness and high negative log likelihood per category suggest, Figure 2. DKL obtains
a relatively high RMSE and no improvement with selective prediction, although the correlation
between predictive uncertainty and MAE, Figure 2, is also high on higher categories. However this
may be due to high errors and high uncertainties. Compared to DKL, DUE obtains a significantly
lower RMSE which may be due to the spectral normalization of layers, as this is the only difference
between the methods. Otherwise DUE obtains a lower MACE per category than DKL, yet also a
lower correlation between predictive uncertainty and MAE. Diffusion UQ methods, surprisingly
CARD obtains a average RMSE and a significant improvement with selective prediction, while
maintaining a coverage of 60 % and a low miscalibration error (MACE) of 0.05.

5 CONCLUSION

We presented a first analysis of predictive uncertainty for cyclone wind speed estimation. The var-
ious methods considered performed quite differently across storm categories and often exhibited a
tradeoff between coverage vs accuracy. When predicting the maximum sustained wind speed, MVE
demonstrated high coverage and low RMSE. Yet if a lower coverage is tolerable, then SWAG is a
more attractive option due to it having a better RMSE than MVE. In future work, we plan to consider
autoregressive models for the time series task presented in Figure 3.
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Devis Tuia, Konrad Schindler, Begüm Demir, Gustau Camps-Valls, Xiao Xiang Zhu, Mrinalini
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1 ADDITIONAL FIGURES AND TABLES

1.1 EXPERIMENTS WITH A MINIMUM WIND SPEED OF ZERO

Figure 1: Uncertainty Metrics over different storm categories.

TD TS H1 H2 H3 H4 H5
uqmethod rmse ↓ nll ↓ rmse ↓ nll ↓ rmse ↓ nll ↓ rmse ↓ nll ↓ rmse ↓ nll ↓ rmse ↓ nll ↓ rmse ↓ nll ↓

Deterministic MVE 7.504 3.264 9.313 3.692 13.801 4.330 14.504 4.219 15.911 4.337 14.843 4.149 18.175 4.691
DER 7.581 4.432 9.185 4.651 14.902 4.802 15.178 4.800 16.553 4.809 14.946 4.812 18.644 4.885

Quantile CQR 8.319 3.529 9.723 3.801 15.508 4.209 16.635 4.280 17.972 4.430 17.401 4.345 27.543 4.934
QR 8.319 3.359 9.723 3.731 15.508 4.370 16.635 4.422 17.972 4.690 17.401 4.404 27.543 5.286

Ensemble Deep Ensemble 15.562 4.038 12.150 4.028 15.901 4.297 21.370 4.582 28.335 5.038 36.286 5.432 52.112 6.817

Bayesian

BNN VI ELBO 6.479 31.978 8.361 45.774 13.405 102.664 13.377 86.707 17.175 144.454 15.703 105.009 16.581 189.350
BNN VI 8.152 3.422 8.918 3.617 14.409 4.355 17.683 4.613 22.457 5.288 25.110 5.004 33.325 5.224
Laplace 8.401 4.281 9.343 4.293 14.308 4.371 15.299 4.390 17.773 4.444 16.493 4.416 22.843 4.580
MC Dropout 7.374 3.565 8.643 3.808 14.401 4.204 15.263 4.256 19.763 4.501 19.454 4.475 24.063 4.624
DKL 9.634 3.757 11.552 3.892 17.243 4.367 19.994 4.542 22.006 4.776 15.287 4.172 19.217 4.535
DUE 7.036 3.523 9.139 3.662 13.948 4.126 14.375 4.177 17.870 4.651 16.312 4.427 21.046 5.177
SWAG 6.940 3.427 9.051 3.775 13.805 4.103 14.761 4.115 16.307 4.187 16.083 4.155 20.497 4.495

Diffusion CARD 7.167 3.268 10.158 4.045 15.557 4.816 16.622 4.858 19.077 5.329 17.497 4.785 24.322 6.378

Table 1: Evaluation Results on test set. RMSE per category.
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Figure 2: MAE over different storm categories.

Figure 3: RMSE before and after selective prediction over different storm categories. The dotted
bars are the RMSE after selective prediction with a threshold of 9 kts.

2
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Figure 4: Uncertainty Metrics over different storm categories.

1.2 EXPERIMENTS WITH A MINIMUM WIND SPEED OF 34

UQ group Method RMSE ↓ RMSE ∆ ↑ Coverage ↑ CRPS ↓ NLL ↓ MACE ↓
None Deterministic 11.68 0.00 1.00 NaN NaN NaN

Deterministic MVE 11.21 NaN NaN 6.08 3.79 0.03
DER 11.05 NaN 0.00 10.24 4.60 0.33

Quantile QR 11.33 2.26 0.44 6.11 3.86 0.03
CQR 11.57 1.99 0.62 6.25 4.00 0.08

Ensemble Deep Ensemble 14.56 NaN 0.00 7.96 4.06 0.04

Bayesian

MC Dropout 11.56 2.55 0.01 6.40 3.85 0.07
SWAG 11.09 NaN NaN 6.26 3.93 0.12
Laplace 11.68 NaN 0.00 7.98 4.27 0.24
BNN VI ELBO 13.10 1.73 0.68 7.11 4.20 0.10
DKL 13.17 NaN NaN 7.43 4.05 0.11
DUE 11.07 NaN 0.00 6.03 3.85 0.02

Diffusion CARD 15.09 4.60 0.02 8.83 4.22 0.09

Table 2: Evaluation Results on test set. RMSE ∆ shows the improvement after selective prediction,
while Coverage denotes the fraction of remaining samples that were not omitted. Threshold 9 knots.
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1.3 EXPERIMENTS WITH A MINIMUM WIND SPEED OF 64

Figure 5: Uncertainty Metrics over different storm categories.

UQ group Method RMSE ↓ RMSE ∆ ↑ Coverage ↑ CRPS ↓ NLL ↓ MACE ↓
None Deterministic 10.78 0.00 1.00 NaN NaN NaN

Deterministic MVE 11.48 1.43 0.64 6.45 3.95 0.09
DER 11.90 NaN 0.00 9.33 4.47 0.29

Quantile QR 11.76 1.20 0.62 6.68 4.03 0.10
CQR 11.76 2.46 0.05 6.55 3.87 0.02

Ensemble Deep Ensemble 14.43 NaN 0.00 8.08 4.07 0.01

Bayesian

MC Dropout 11.86 NaN 0.00 6.70 3.91 0.06
SWAG 11.59 NaN 0.00 6.50 3.87 0.05
Laplace 10.74 NaN 0.00 6.37 3.94 0.15
BNN VI ELBO 13.82 2.44 0.44 7.87 4.19 0.11
DKL 12.12 NaN 0.00 6.80 3.98 0.02
DUE 11.38 NaN 0.00 6.31 3.85 0.03

Table 3: Evaluation Results on test set. RMSE ∆ shows the improvement after selective prediction,
while Coverage denotes the fraction of remaining samples that were not omitted. Threshold 9 knots.
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2 OVERVIEW OF APPLIED UQ METHODS

We consider regression problems in the following setting: Given an input x⋆ ∈ X the task is to
predict a target y⋆ ∈ Y . Notably, regression is distinguishable from classification as the targets are
continuous and possibly infinite, as opposed to a fixed set of finite labels in classification. In our
experiments we want to use a neural network to predict a unobserved test target y⋆ ∈ Y for a given
unobserved test input x⋆ ∈ X . Precisely, given the set of n ∈ N observed training input-target pairs
from our dataset,

Dtrain = {(xi, yi)}ni=1, (1)
the task of the models or NNs is to predict a target y⋆ ∈ Y given an input x⋆ ∈ X such that the
loss objective between the predictions and targets is minimized over all the training points. This is
described in the following.

The model or NN can be regarded as a function fθ, parameterized by weights θ, that maps inputs x
directly to targets y ∈ Y ,

fθ : X → Y (2)
or to a probability distribution,

fθ : X → P(Y ) (3)
such that

fθ(x
⋆) = pθ(x

⋆) ∈ P(Y ). (4)
or as fθ : X → Y n that maps to n quantiles,

fθ(x
⋆) = (q1(x

⋆), ..., qn(x
⋆)) ∈ Y n. (5)

For example, a NN can be configured to output the mean and standard deviation of a Gaussian
distribution fθ(x

⋆) = (µθ(x
⋆), σθ(x

⋆)).

Previous Benchmarks and Reviews of Uncertainty Quantification Methods for Regression Problems
Publication (Gustafsson et al., 2023) (Schmähling et al., 2022) (Dewolf et al., 2022) (Izmailov et al., 2021) here
Deterministic Methods
Baseline ✓
Gaussian (MVE) ✓ ✓
Deep Evidential Networks (DER) ✓
Ensemble based
Deep Ensembles, GMM ✓ ✓ ✓ ✓
Bayesian
MC Dropout, GMM ✓ ✓ ✓
BNN with VI ✓ ✓
Laplace Approximation ✓
SWAG ✓ ✓
DVI, SI ✓
HMC ✓
Gaussian Process based
”Gaussian Process (GP)” ✓
Approximate GP ✓
Deep Kernel Learning (DKL) ✓
Spectral Normalized GPs (DUE) ✓
Quantile based
Quantile Regression (QR) ✓ ✓ ✓
Conformal Prediction (CQR) ✓ ✓ ✓
Diffusion Model
CARD ✓

Table 4: Comparison of previous reviews. The BNN implementations of BNN with VI and SWAG
in this work use partially stochastic networks, as proposed in (Sharma et al., 2023).

As Table 4 demonstrates, we compare five classes of UQ methods: deterministic, ensemble,
Bayesian, quantile and diffusion based methods. Firstly, deterministic UQ methods use a DNN,
fθ : X → P(Y ), that map inputs x to the parameters of a probability distribution fθ(x

⋆) =
pθ(x

⋆) ∈ P(Y ). These include Deep Evidential Networks (DER) Amini et al. (2020), where
we use the correction proposed by Meinert et al. (2023), and Mean Variance Networks (MVE)
(Nix & Weigend, 1994) which output the mean and standard deviation of a Gaussian distribution
fMVE
θ (x⋆) = (µθ(x

⋆), σθ(x
⋆)). Secondly, the broadly considered state-of-the-art method Deep En-

sembles (DeepEnsembles) proposed by Lakshminarayanan et al. (2017) utilizes an ensemble over

5
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MVE networks. Thirdly, Bayesian methods aim at modelling a distribution over the network pa-
rameters and are commonly used to approximate the first and second moment of a marginalized
distribution. These include Bayesian Neural Networks with Variational Inference (BNN VI ELBO)
Blundell et al. (2015), MC-Dropout (MCDropout) Gal & Ghahramani (2016), the Laplace Approx-
imation (Laplace) Ritter et al. (2018)Daxberger et al. (2021a) and SWAG Maddox et al. (2019). A
slightly different approach is taken by Gaussian process based methods that model a distribution over
functions, yet also approximate the fist and second moment of this distribution. These include Deep
Kernel Learning (DKL) Wilson et al. (2016) and an extension thereof Deterministic Uncertainty Es-
timation (DUE) (van Amersfoort et al., 2021). Fourthly, quantile based models fθ : X → Y n that
map to n quantiles, fθ(x⋆) = (q1(x

⋆), ..., qn(x
⋆)) ∈ Y n, such as Quantile Regression (Quantile

Regression) and the conformalized version thereof (ConformalQR) suggested by Romano et al.
(2019). Lastly, we also consider a diffusion model (CARD) as introduced by Han et al. (2022). A
detailed description of the methods is provided in the supplementary material.

3 DESCRIPTION OF UQ METHODS

Baseline model: Depending on the application a DNN, for example a residual network, that is used
as a baseline. This model does not predict any uncertainty and just a mean fθ(x

⋆). For the loss
objective, the mean squared error is used

L(θ, (x⋆, y⋆)) = (fθ(x
⋆)− y⋆)2. (6)

3.1 DETERMINISTIC UQ METHODS

In the following we list the deterministic UQ methods considered in this work. These methods
provide UQ estimates within a single forward pass by predicting the parameters of a probability
distribution.

Gaussian: The Gaussian model, also referred to as Mean Variance Estimation, first studied in Nix &
Weigend (1994) and further used in Sluijterman et al. (2023), is a deterministic model that predicts
the parameters of a Gaussian distribution

fθ(x
⋆) = (µθ(x

⋆), σθ(x
⋆)) (7)

in a single forward pass, where standard deviations σθ(x
⋆) can be used as a measure of data un-

certainty. To this end, the network now outputs two parameters and is trained with the Gaussian
negative log-likelihood (NLL) as a loss objective Kendall & Gal (2017), that is given by

L(θ, (x⋆, y⋆)) =
1

2
ln
(
2πσθ(x

⋆)2
)
+

1

2σθ(x⋆)2
(µθ(x

⋆)− y⋆)
2
. (8)

Correspondingly, the model prediction consists of a predictive mean, µθ(x
⋆), and the predictive

uncertainty, in this case the standard deviation σθ(x
⋆).

Deep Evidential Networks (DER):

Deep Evidential Regression (DER) (Amini et al., 2020) is a single forward pass UQ method that
aims to disentangle aleatoric and epistemic uncertainty. DER entails a four headed network output

fθ(x
⋆) = (γθ(x

⋆), νθ(x
⋆), αθ(x

⋆), βθ(x
⋆)), (9)

that is used to compute the predictive t-distribution with 2α(x⋆) degrees of freedom:

p(y(x⋆)|fθ(x⋆)) = St2αθ(x⋆)

(
y⋆
∣∣∣∣γθ(x⋆),

βθ(x
⋆)(1 + νθ(x

⋆))

νθ(x⋆)αθ(x⋆)

)
. (10)

6
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In Amini et al. (2020) the network weights are obtained by minimizing the loss objective that is
the negative log-likelihood of the predictive distribution and a regularization term. However, due to
several drawbacks of DER, Meinert et al. (2023) propose the following adapted loss objective that
we also utilise,

L(θ, (x⋆, y⋆)) = log σ2
θ(x

⋆) + (1 + λνθ(x
⋆))

(y⋆ − γθ(x
⋆))2

σ2
θ(x

⋆)
(11)

where σ2
θ(x

⋆) = βθ(x
⋆)/νθ(x

⋆). The mean prediction is given as,

µθ(x
⋆) = γθ(x

⋆). (12)

Further following (Meinert et al., 2023), we use their reformulation of the uncertainty decomposi-
tion. The aleatoric uncertainty is given by

ualeatoric(x
⋆) =

√
β(x⋆)

α(x⋆)− 1
, (13)

and the epistemic uncertainy by,

uepistemic(x
⋆) =

1√
ν(x⋆)

. (14)

The predictive uncertainty is then, given by

u(x⋆) =
√
uepistemic(x⋆)2 + ualeatoric(x⋆)2. (15)

3.2 ENSEMBLE BASED UQ METHODS

Deep Ensembles: introduced in Lakshminarayanan et al. (2017), Deep Ensembles approximate a
posterior distribution over the model weights with a Gaussian mixture model over the output of
separately initialized and trained networks. In Wilson & Izmailov (2020) the authors showed that
Deep Ensembles can be interpreted as a Bayesian method.

For the Deep Ensembles model the predictive mean is given by the mean taken over N ∈ N models
fθi(x

⋆) = µθi(x
⋆) that output a mean with different weights {θi}Ni=1,

µ(x⋆) =
1

N

N∑
i=1

µθi(x
⋆). (16)

The predictive uncertainty is given by the standard deviation of the predictions of the N different
networks, Gaussian ensemble members,

σ(x⋆) =

√√√√ 1

N

N∑
i=1

(µθi(x
⋆)− µ(x⋆))

2
. (17)

Summary of hyperparameters for the Deep Ensembles model
Hyperparameter value range hints
Number of ensemble members N ≈ [5, 20] do an ablation study on N .
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Deep Ensembles GMM:

For the Deep Ensembles GMM model, the predictive mean is given by the mean taken over N ∈ N
models fθi(x

⋆) = (µθi(x
⋆), σθi(x

⋆)) with different weights {θi}Ni=1,

µg(x
⋆) =

1

N

N∑
i=1

µθi(x
⋆). (18)

The predictive uncertainty is given by the standard deviation of the Gaussian mixture model consist-
ing of the N different networks, Gaussian ensemble members,

σg(x
⋆) =

√√√√ 1

N

N∑
i=1

(µθi(x
⋆)− µg(x⋆))

2
+

1

N

N∑
i=1

σ2
θi
(x⋆). (19)

Note that the difference between ”Deep Ensembles” and ”Deep Ensembles GMM” is that in the latter
we also consider the predictive uncertainty output of each individual ensemble member, whereas in
the former we only consider the means and the variance of the mean predictions of the ensemble
members.

Because each ensemble member has a probabilistic predictive distribution (µθi(x
⋆), σθi(x

⋆)), we
can also perform a decomposition into epistemic and aleatoric components:

uepistemic(x
⋆) =

1

N

N∑
i=1

(µg(x
⋆)− µθi(x

⋆))2 , (20)

ualeatoric(x
⋆) =

1

N

N∑
i=1

σ2
θi(x

⋆) . (21)

Summary of hyperparameters for the Deep Ensembles model
Hyperparameter value range hints
Number of ensemble members N ≈ [5, 20] do an ablation study on N .

3.3 BAYESIAN UQ METHODS

The general aim of Bayesian UQ methods is to obtain the predictive distribution by marginalization
over the model weights θ,

p(y⋆|x⋆, D) =

∫
p(y⋆|x⋆, θ)p(θ|D)dθ. (22)

The posterior distribution over the weights p(θ|D) can be approximated by utilizing Bayes’ theorem
or, for example, by a variational approach. However, the predictive distribution, equation 22, is
usually intractable and, in the following various approaches of approximation are presented (most
of which rely on sampling over the posterior).

MC-Dropout: Is an approximate Bayesian method with sampling. A fixed dropout rate p ∈ [0, 1) is
used, meaning that random weights are set to zero during each forward pass with the probability p.
This models the network weights and biases as a Bernoulli distribution with dropout probability p.
While commonly used as a regularization method, Gal & Ghahramani (2016) showed that activating
dropout during inference over multiple forward passes yields an approximation to the posterior
over the network weights. Due to its simplicity it is widely adopted in practical applications, but
MC-Dropout and variants thereof have also been criticized for their theoretical shortcomings Hron
et al. (2017), Osband (2016).

8
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For the MC Dropout model the prediction consists of a predictive mean and a predictive uncertainty.
For the predictive mean, the mean is taken over m ∈ N forward passes through the network fp,θ
with a fixed dropout rate p, resulting in different weights {θi}mi=1, given by

fp(x
⋆) =

1

m

m∑
i=1

fp,θi(x
⋆). (23)

The predictive uncertainty is given by the standard deviation of the predictions over m forward
passes,

σp(x
⋆) =

√√√√ 1

m

m∑
i=1

(fp,θi(x
⋆)− fp(x⋆))

2
. (24)

Summary of hyperparameters for the MC Dropout model
Hyperparameter value range hints
Drop out rate p ∈ [0, 1) start with p = 0.2.

MC Dropout GMM: We also consider combining this method with the previous model Gaussian
network, as in Kendall & Gal (2017), aiming at disentangling the data and model uncertainties, ab-
breviated as MC Dropout GMM. For the MC Dropout GMM model, the prediction again consists
of a predictive mean and a predictive uncertainty fp,θ(x

⋆) = (µp,θ(x
⋆), σp,θ(x

⋆)). Here the predic-
tive mean is given by the mean taken over m forward passes through the Gaussian network mean
predictions µp,θ with a fixed dropout rate p, resulting in different weights {θi}mi=1, given by

µp(x
⋆) =

1

m

m∑
i=1

µp,θi(x
⋆). (25)

The predictive uncertainty is given by the standard deviation of the Gaussian mixture model obtained
by the predictions over m forward passes,

σp(x
⋆) =

√√√√ 1

m

m∑
i=1

(µp,θi(x
⋆)− µp(x⋆))

2
+

1

m

m∑
i=1

σ2
p,θi

(x⋆). (26)

A decomposition of uncertainty can then be performend in a similar way as to with deep ensembles.

Summary of hyperparameters for the MC Dropout GMM model
Hyperparameter value range hints
Number of burn-in-epochs ≈ [0, n] after burn-in-epochs train variance and mean outputs.
Drop out rate p ∈ [0, 1) start with p = 0.2.

BNN with VI: Bayesian Neural Networks (BNNs) with variational inference (VI) are an approx-
imate Bayesian method. Here, we follow the mean-field assumption, meaning that the variational
distribution is factorized as a product of individual Gaussian distributions. This results in a diagonal
Gaussian approximation of the posterior distribution over the model parameters

The most common approach is to maximize the evidence lower bound (ELBO). We note that
there are other, alternative approaches for variational inference, such as α-divergence minimization
(Hernandez-Lobato et al., 2016).

Uitilizing standard stochastic gradient descent by using the reparameterization trick Kingma &
Welling (2013) one can backpropagate through the necessary sampling procedure, a process called

9
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Monte Carlo variational Bayes (Ranganath et al., 2014).

The predictive likelihood is given by,

p(Y |θ,X) =

N∏
i=1

p(yi|θ, xi) =

N∏
i=1

N (yi|fθ(xi),Σ). (27)

The prior on the weights is given by,

p(θ) =

L∏
l=1

Vl∏
h=1

Vl−1+1∏
j=1

N (whj,l|0, λ) (28)

where whj,l is the h-th row and the j-th column of weight matrix θL at layer index L and λ is the
prior variance. Note that as we use partially stochastic networks, equation 28 may contain less
factorsN (whj,l|0, λ) depending on how many layers are stochastic. Then, the posterior distribution
of the weights is obtained by Bayes’ rule as

p(θ|D) = p(Y |θ,X)p(θ)

p(Y |X)
. (29)

As the posterior distribution over the weights is intractable a variational approximation is used,

q(θ) ≈ p(θ|D), (30)

that is a diagonal Gaussian. Now given an input x⋆, the predictive distribution can be obtained as

p(y⋆|x⋆,D) =
∫

p(y⋆|θ, x⋆)p(θ|D)dθ. (31)

As equation 31 is intractable it is approximated by sampling form the approximation q(θ) in equa-
tion 30 to the posterior distribution in equation 29. The parameters of q(θ) are obtained by max-
imizing the evidence lower bound (ELBO) on the Kullback-Leibler (KL) divergence between the
variational approximation and the posterior distribution over the weights. The negative ELBO is
given by,

L(θ, (xstar, ystar)) = βDKL(q(θ)||p(θ)) +
1

2
ln
(
2πσ2

)
+

1

2σ2
(fθ(x

⋆)− y⋆)
2
. (32)

The KL divergence can be computed analytically in the case of a Gaussian prior and the hyperpa-
rameter β can be used to weight the influence of the variational parameters relative to that of the
data. Alternatively, in the case of a fixed dataset of size N this parameter is automatically set to
1
N . The hyperparameter σ can be either fixed or set to be an additional parameter to be tuned by
including it in the objective function Eq. (32), a process called type-II maximum likelihood.

The predictive mean is obtained as the mean of the network output fθ with S weight samples from
the variational approximation θs ∼ q(θ),

fm(x⋆) =
1

S

S∑
i=1

fθs(x
⋆). (33)

The predictive uncertainty is given by the standard deviation thereof, including the (possibly esti-
mated) constant output noise σ:

σp(x
⋆) =

√√√√ 1

S

S∑
i=1

(fθs(x
⋆)− fm(x⋆))

2
+ σ2. (34)

10
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If one uses the NLL and adapts the BNN to output a mean and standard deviation of a Gaussian
fθs(x

⋆) = (µθs(x
⋆), σθs(x

⋆)), the mean prediction is given by

fm(x⋆) =
1

S

S∑
s=1

µθs(x
⋆). (35)

and the predictive uncertainty is obtained as the standard deviation of the corresponding Gaussian
mixture model obtained by the weight samples,

σp(x
⋆) =

√√√√ 1

S

S∑
s=1

(µθs(x
⋆)− fm(x⋆))

2
+

S∑
s=1

σ2
θs
(x⋆). (36)

Summary of hyperparameters for the BNN with VI model
Hyperparameter value range hints
Number burn-in-epochs ≈ [0, n] after burn-in-epochs train variance and mean outputs.
Loss scale factor β β ≈ [100, 500] should depend on parameter and train set size.
Samples during training Str Str ≈ [5, 20] depending on network size and computing resources.
Samples during tests and prediction Ste Ste ≈ [5, 50] depending on network size and computing resources.
Output noise scale σ σ ≈ [1.0, 5.0] depending on label noise.
Prior mean µp for stochastic parameters µp ≈ [0, 1.0] start with 0. Prior variance σp for stochastic parameters
σp ≈ [0, 3.0] start with 1.0.
Mean initialization for posterior µpr µpr ≈ [0, 1.0] approximate posterior over parameters
Variance initialization for posterior ρpr ρpr ≈ [−6.0, 0.0] variance through σ = log(1 + exp(ρ)), approximate posterior over parameters
Bayesian layer type ”flipout” or ”reparameterization”
Stochastic module names list of module names or a list of module numbers Transform module to be stochastic.

Laplace Approximation: Originally introduced by MacKay (1992), the Laplace Approximation
has been adapted to modern neural networks by Ritter et al. (2018) and Daxberger et al. (2021a)
and is an approximate Bayesian method. The goal of the Laplace Approximation is to use a
second-order Taylor expansion around the fitted MAP estimate and yield a posterior approximation
over the model parameters via a full-rank, diagonal or Kronecker-factorized approach. In order for
the Laplace Approximation to be computationally feasible for larger network architectures, we use
the Laplace library to include approaches, such as subnetwork selection that have been for example
proposed by Daxberger et al. (2021b).

The general idea of the Laplace Approximation to obtain a distribution over the network parame-
ters with a Gaussian distribution centered at the MAP estimate of the parameters Daxberger et al.
(2021b). In this setting, a prior distribution p(θ) is defined over our network parameters. Because
modern neural networks consists of millions of parameters, obtaining a posterior distribution over
the weights θ is intractable. The LA takes MAP estimate of the parameters θMAP from a trained
network fθMAP

(x) = µθMAP
(x) and constructs a Gaussian distribution around it. The parameters

θMAP are obtained by
θMAP = argminL(θ;D), (37)

where L is the mean squared error or also referred to as the ℓ2 loss, L(θ;D) :=
−
∑n

i=1 log(p(yi|fθ(xi))) and the posterior p(yi|fθ(xi)) is chosen to be a Gaussian with constant
variance σ2, such that the loss is the mean squared error and a homoskedastic noise model is as-
sumed. Then with Bayes Theorem, as in Daxberger et al. (2021b), one can relate the posterior to the
loss,

p(θ|D) = p(D|θ)p(θ)/p(D) =
1

Z
exp(−L(θ;D)), (38)

with Z =
∫
p(D|θ)p(θ)dθ. Now a second-order expansion of L around θMAP is used to construct

a Gaussian approximation to the posterior p(θ|D):

−L(θ;D) ≈ −L(θMAP ;D)− 1

2
(θ − θMAP )(∇2

θL(θ;D)|θMAP )(θ − θMAP ). (39)

11
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The term with the first order derivative is zero as the loss is evaluated at a minimum θMAP Murphy
(2022), and, further, one assumes that the first term is neglible as the loss is evaluated at θ =
θMAP . Then taking the expontential of both sides allows to identify, after normalization, the Laplace
approximation,

p(θ|D) ≈ N (θMAP ,Σ) with Σ = (∇2
θL(θ;D)|θMAP )

−1. (40)

As the covariance is just the inverse Hessian of the loss, with θMAP ∈ RW and H−1 ∈ RW×W ,
with W being the number of weights, the posterior distribution is given by

p(θ|D) ≈ N (θMAP , H
−1). (41)

The computation of the Hessian term is still expensive. Therefore, further approximations are in-
troduced in practice, most commonly the Generalized Gauss-Newton matrix Martens (2020). This
takes the following form:

H ≈ H̃ =

N∑
n=1

JT
n HnJn, (42)

where Jn ∈ RO×W is the Jacobian of the model outputs with respect to the parameters θ and
Hn ∈ RO×O is the Hessian of the negative log-likelihood with respect to the model outputs, where
O denotes the model output size and W the number of parameters.

Given equation 41 during inference on unseen data, one cannot compute the full posterior predictive
distribution but instead resort to sampling θs ∼ p(θ|D) for s ∈ {1, ..., S} to approximate the
predictions,

ŷ(x⋆) =
1

S

S∑
s=1

fθs(x
⋆), (43)

and obtain the predictive uncertainty by

σ2(x⋆) =

√√√√ 1

S

S∑
s=1

fθs(x
⋆)2 − ŷ(x⋆)2 + σ2. (44)

For the subnet strategy, we include the options from the Laplace library for selecting the stochastic
parameters.

Summary of hyperparameters for the BNN with VI model
Hyperparameter value range hints
Number burn-in-epochs ≈ [0, n] after burn-in-epochs train variance and mean outputs.
Loss scale factor β β ≈ [100, 500] should depend on parameter and train set size.
Samples during training Str Str ≈ [5, 20] depending on network size and computing resources.
Samples during tests and prediction Ste Ste ≈ [5, 50] depending on network size and computing resources.

SWAG: Is an approximate Bayesian method and uses a low-rank Gaussian distribution as an ap-
proximation to the posterior over model parameters. The quality of approximation to the posterior
over model parameters is based on using a high SGD learning rate that periodically stores weight
parameters in the last few epochs of training Maddox et al. (2019). SWAG is based on Stochastic
Weight Averaging (SWA), as proposed in Izmailov et al. (2018). For SWA the weights are obtained
by minimising the MSE loss with a variant of stochastic gradient descent. After, a number of burn-in
epochs, t̃ = T −m, the last m weights are stored and averaged to obtain an approximation to the
posterior, by
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θSWA =
1

m

T∑
t=t̃

θt. (45)

For SWAG we use the implementation as proposed by Maddox et al. (2019). Here the posterior is
approximated by a Gaussian distribution with the SWA mean, equation 45 and a covariance matrix
over the stochastic parameters that consists of a low rank matrix plus a diagonal,

p(θ|D)N
(
θSWA,

1

2
(Σdiag +Σlow−rank)

)
. (46)

The diagonal part of the covariance is given by

Σdiag = diag(θ̄2 − θ2SWA) (47)

where,

θ̄2 =
1

m

T∑
t=t̃

θ2t . (48)

The low rank part of the covariance is given by

Σlow−rank =
1

m

T∑
t=t̃

(θt − θ̄t)(θt − θ̄t)
T , (49)

where θ̄t is the running estimate of the mean of the parameters from the first t epochs or also
samples. In order to approximate the mean prediction, we again resort to sampling from the posterior
equation 46. With θs ∼ p(θ|D) for s ∈ {1, ..., S}, the mean prediction is given by

ŷ(x⋆) =
1

S

S∑
s=1

fθs(x
⋆), (50)

and obtain the predictive uncertainty by

σ(x⋆) =

√√√√ 1

S

S∑
s=1

fθs(x
⋆)2 − ŷ(x⋆)2. (51)

For the subnet strategy, we include selecting the parameters to be stochastic by module names.

3.4 GAUSSIAN PROCESS BASED UQ METHODS

Recap of Gaussian Processes (GPs): The goal of previously introduced methods was to find a
distribution over the weights of a parameterized function i.e. a neural network. In contrast, the basic
idea of a Gaussian Process (GP) is to instead consider a distribution over possible functions, that fit
the data in some way. Formally,

”A Gaussian process is a collection of random variables, any finite number of which have a joint
Gaussian distribution.” Seeger (2004)
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Precisely, a GP can be described by a possibly infinite amount of function values

f(x) ∼ GP(m(x), kγ(x)), (52)

such that any finite collection of function values f has a joint Gaussian distribution,

f = f(X) = [f(x1), . . . , f(xK)]⊤ ∼ N (mX ,KX,X) , (53)

with a mean vector, (mX)i = m(xi), and covariance matrix, (KX,X)ij = kγ(xi, xj), stemming
from the mean function m and covariance kernel of the GP, kγ , that is parametrized by γ. A com-
monly used covariance function is the squared exponential, also referred to as Radial Basis Function
(RBF) kernel, exponentiated quadratic or Gaussian kernel:

kγ(x, x
′) = cov(f(x), f(x′)) = η2 exp

(
− 1

2l2
|x− x′|2

)
. (54)

Where γ = (η2, l) and η2 can be set to 1 or tuned as a hyperparameter. By default the lengthscale
l = 1 but can also be optimized over. Now the GP, f(x) ∼ GP (m(x), k(x, x′)), as a distribution
over functions can be used to solve a regression problem. Following Seeger (2004), consider the
simple case where the observations are noise free and you have training data Dtrain = {(xi, yi)}Ni=1

with X = (xi)
N
i=1 and Y = (yi)

N
i=1. The joint prior distribution of the training outputs, Y , and the

test outputs f∗ = f∗(X∗) = (f(ik))
m
i=1 where X∗ = (xi)

m
i=1 are the test points, according to the

prior is

p(Y, f∗) = N
(
0,

[
KX,X KX,X∗
KX∗,X KX∗,X∗

])
. (55)

Here the mean function is assumed to be mX = 0 and KX,X∗ denotes the N × m matrix of the
covariances evaluated at all pairs of training and test points, and similarly for the other entries
KX,X , KX∗,X∗ and KX∗,X . To make predictions based on the knowledge of the training points,
conditioning on the prior observations is used and yields,

p(f∗|X∗, X, Y ) = N (KX∗,XK−1
X,XY,KX∗,X∗ −KX∗,X∗K−1

X,XKX,X∗)

= N (m(X,X∗, Y ), K̃X,X∗).

Now to generate function values on test points, one uses samples from the posterior distribution
f∗(X∗) ∼ N (m(X,X∗, Y ), K̃(X,X∗)). To illustrate how we can obtain these samples from the
posterior distribution, consider a Gaussian with arbitrary mean m and covariance K, i.e. f∗ ∼
N (m,K). For this one can use a scalar Gaussian generator, which is available in many packages:

1. Compute the Cholesky decomposition of K = LLT , where L is a lower triangular matrix.
This works because K is symmetric by definition.

2. Then, draw multiple u ∼ N (0, I).
3. Now, compute the samples with f∗ = m+Lu. This has the desired mean, m and covariance

LE(uuT )LT = LLT = K.

The above can be extended to incorporate noisy measurements y → y + e, see Seeger (2004), or
noise on the inputs as in Johnson et al. (2019). Both of these extensions require tuning of further
hyperparameters, yet beneficially allow to incorporate a prediction of aleatoric uncertainty in a GP.

For example, assume additive Gaussian noise on the distribution of the function values,

p(y(x)|f(x)) = N (y(x); f(x), σ2). (56)
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Then the predictive distribution of the GP evaluated at the K∗ test points, X∗, is given by

p(f∗|X∗, X, Y, γ, σ2) = N (E[f∗], cov(f∗)) , (57)

E[f∗] = mX∗ +KX∗,X [KX,X + σ2I]−1Y ,

cov(f∗) = KX∗,X∗ −KX∗,X [KX,X + σ2I]−1KX,X∗ .

Here mX∗ is the K∗ × 1 mean vector, which is assumed to be zero in the previous case.

In both cases, with and without additive noise on the function values, the GP is trained by learning
interpretable kernel hyperparameters. The log marginal likelihood of the targets y - the probabil-
ity of the data conditioned only on kernel hyperparameters γ - provides a principled probabilistic
framework for kernel learning:

log p(y|γ,X) ∝ −
(
y⊤(Kγ + σ2I)−1y + log |Kγ + σ2I|

)
, (58)

whereKγ is used forKX,X given γ. Kernel learning can be achieved by optimizing Eq. equation 58
with respect to γ.

The computational bottleneck for inference is solving the linear system (KX,X + σ2I)−1y, and for
kernel learning it is computing the log determinant log |KX,X+σ2I| in the marginal likelihood. The
standard approach is to compute the Cholesky decomposition of the K × K matrix KX,X , which
requires O(K3) operations and O(K2) storage. After inference is complete, the predictive mean
costs O(K), and the predictive variance costs O(K2), per test point x∗.

Deep Kernel Learning (DKL): Conceptually DKL consists of a NN architecture that extracts a
feature representation of the input x and fits an approximate GP on top of these features to produce
a probabilistic output Wilson et al. (2016). DKL combines GPs and DNNs in a scalable way. In
practice, all parameters, the weights of the feature extractor and the GP parameters are optimized
jointly by maximizing the log marginal likelihood of the GP. We utilize GPytorch for our implemen-
tation Gardner et al. (2018) and use a grid approximation where we optimized over the number of
inducing points. For DKL the GP is transformed by replacing the inputs x by the outputs of a NN
in the following way. The kernel kγ(x, x′) with hyperparameters θ is replaced by,

kγ(x, x
′)→ kγ(g(x, θ), g(x

′, θ)) , (59)

where g(x, θ) is a non-linear mapping given by a deep architecture, such as a deep convolutional
network mapping into a feature space of dimension J , parametrized by weights θ,

g(·, θ) : X → RJ

x 7→ g(x, θ). (60)

This so called deep kernel in equation 59 is now used as the covariance function of a GP to model
data D = {xi, yi}Ni=1. The deep kernel hyperparameters, ρ = {γ, θ, σ2}, can be jointly learned by
maximizing the log marginal likelihood of the GP equation 61.

L = log p(Y |γ,X, θ) ∝ −
(
y⊤(Kγ,θ + σ2I)−1y + log |Kγ,θ + σ2I|

)
, (61)

Except for the replacement of input data, one can almost follow the same procedures for learning
and inference as for GPs as outlined previously. For optimizing equation 61 the chain rule is used to
compute derivatives of the log marginal likelihood with respect to the deep kernel hyperparameters
as in Wilson et al. (2016).

Exact inference is possible for the regression case, yet the computational complexity scales cubically
with the number of data points and makes it not suitable for large datasets. Thus, following (van
Amersfoort et al., 2021) in the implementation the sparse GP of (Titsias, 2009) and the variational
approximation of (Hensman et al., 2014) is used, in order to allow for DKL to scale to large training
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datasets. The sparse GP approximation of (Titsias, 2009) augments the DKL model with M inducing
inputs, Z ∈ RM×J , where J is the dimensionality of the feature space, as in equation 60. Moreover,
to perform computationally efficient inference we use the the variational approximation introduced
by (Hensman et al., 2014), where inducing points Z are treated as variational parameters. U are
random variables with prior

p(U) = N (U |mZ ,KZ,Z), (62)
and variational posterior

q(U) = N (U |m̃, S), (63)

where m̃ ∈ RM and S ∈ RM×M are variational parameters and initialized at the zero vector and
the identity matrix respectively. The approximate predictive posterior distribution at training points
X is then

p(f |Y )q(f) =

∫
p(f |U)q(U)dU (64)

Here p(f |U) is a Gaussian distribution for which we can find an analytic expression, see (Hensman
et al., 2014) for details. Note that we deviate from (Hensman et al., 2014) in that our input points X
are mapped into feature space just before computing the base kernel, while inducing points are used
as is (they are defined in feature space). The variational parameters Z, m̃, and S and the feature
extractor parameters θ and GP model hyparparameters γ, given by l and η2, and σ2 are all learned
at once by maximizing a lower bound on the log marginal likelihood of the predictive distribution
p(Y |X), the ELBO, denoted by L. For the variational approximation above, this is defined as

log(p(Y |X)) ≥ L(Z,m, S, γ, θ, σ2) =

N∑
i=1

Eq(f) [log p(yi|f(xi))]− βDKL(q(U)||p(U)). (65)

Both terms can be computed analytically when the likelihood is Gaussian and all parameters can
be learned using stochastic gradient descent. To accelerate optimization gpytorch additionally uti-
lizes the whitening procedure of (Matthews, 2017) in their Variational Strategy. The approximate
predictive posterior distribution at test points X∗ is then

p(f∗|Y )q(f∗) =

∫
p(f∗|U)q(U)dU (66)

For regression tasks we directly use the function values f∗ above as the predictions. We use the
mean of p(f∗|Y ) as the prediction, and the variance as the uncertainty.

4 DETERMINISTIC UNCERTAINTY ESTIMATION (DUE) - EXTENSION OF
DKL

DUE builds on DKL by using the same model except for exchanging the feature extractor of the
DKL model. With this replacement DUE addresses limitations of DKL and provides potentially
robust uncertainty estimates. According to (van Amersfoort et al., 2021) with DKL, data points
dissimilar to the training data (also called OOD data) can potentially be mapped close to feature
representations of in-distribution points. These feature representations, which are close in some
norm, input into the approximate GP yield similar or nearly the same predictions. This is called
”feature collapse”, and suggests that a constraint must be placed on the deep feature extractor. Based
on deterministic uncertainty quantification (DUQ) (Van Amersfoort et al., 2020) and spectrally
normaplized GPs (SNGP) (Liu et al., 2020), the authors of (van Amersfoort et al., 2021) propose
to use a bi-Lipschitz constraint on a feature extractor. This bi-Lipschitz constraint is enforced by
spectral normalization on the weights, (Miyato et al., 2018; Gouk et al., 2021). This constraint
mitigates so-called ”feature collapse”, by forcing the feature representation to be sensitive to
changes in the input (lower Lipschitz, avoids feature collapse) but also generalize due to smoothness
(upper Lipschitz).

For convolutional and linear layers following (van Amersfoort et al., 2021), we use spectral normal-
ization of the weight matrices to promote approximate bi-Lipschitz continuity. To promote spectral
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Algorithm 1 Algorithm for training DUE (van Amersfoort et al., 2021)
1: Definitions:

- Residual NN gθ : x→ RJ with feature space dimensionality J and parameters θ.
- Approximate GP with parameters ρ = {γ, σ2, ω}, where γ = {l, η} and l length scale and η
output scale of kγ , ω GP variational parameters (including m inducing point locations Z)
- Learning rate ζ, loss function L

2: Using a random subset of p points of our training data, X init ⊂ X , compute:
Initial inducing points: K-means on gθ(X

init) with K = m. Use found centroids as initial
inducing point locations Z in GP.
Initial length scale:
l = 1

(p2)

∑p
i=0

∑p
j=i+1 |gθ(X init

i )− gθ(X
init
j )|2.

3: for minibatch xb, yb ⊂ X,Y do
4: θ′ ← spectral normalization(θ)
5: p(y′b|xb)← evaluate GPθ(gθ′(xb))
6: L ← ELBOθ(p(y

′
b|xb), yb)

7: (ρ, θ)← (ρ, θ) + ζ ∗ ∇ρ,θL
8: end for

normalization for fully connected layers and 1× 1 convolutions online power iteration are used and
for larger convolutions an approximate method, as proposed in (Gouk et al., 2021) and was first
implemented by (Behrmann et al., 2019), is used. Spectral normalization is also extended to batch
normalization by rescaling the weights, see (van Amersfoort et al., 2021) for details. Adding spec-
tral normalization to batch normalization layers makes it more likely that the entire network’s upper
Lipschitz constant is bounded. The mean prediction and predictive uncertainty are obtained as for
DKL.

Summary of learnable parameters:

• weights of DNN feature extractor θ
• for the GP, parameters γ: noise hyperparamter σ2, the GP function mean m, the length scale

of the GP kernel l and the scale of the kernel η2. In the above case the GP hyperparameters
are learned by optimizing ELBO.

Summary of hyperparameters:

• number of power iterations for spectral normalization, usually set to r = 1

• number of initial inducing points M

4.1 QUANTILE BASED UQ METHODS

Quantile Regression (QR): The goal of Quantile Regression is to extend a standard regression
model to also predict conditional quantiles that approximate the true quantiles of the data at hand.
It does not make assumptions about the distribution of errors as is usually common. It is a more
commonly used method in Econometrics and Time-series forecasting Koenker & Bassett Jr (1978).

In the following we will describe univariate quantile regression. Any chosen conditional quantile
α ∈ [0, 1] can be defined as

qα(x) := inf{y ∈ R : F (y|X = x) ≥ α}, (67)

where F (y|X = x) = P (Y ≤ y|X = x) is a strictly monotonic increasing cumulative density
function.

For Quantile Regression, the NN fθ parameterized by θ, is configured to output the number of
quantiles that we want to predict. This means that, if we want to predict p quantiles [α1, ...αn],

fθ(x⋆) = (ŷ1(x
⋆), ..., ŷn(x

⋆)). (68)
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The model is trained by minimizing the pinball loss function Koenker & Bassett Jr (1978), given by
the following loss objective,

Li(θ, (x
⋆, y⋆)) = max{(1− αi)(y

⋆ − ŷi(x
⋆)), α(y⋆ − ŷi(x

⋆))}. (69)

Here i ∈ {1, ..., n} denotes the number of the quantile and 100αi is the percentage of the quantile for
αi ∈ [0, 1). Note that for α = 1/2 one recovers the ℓ1 loss. During inference, the model will output
an estimate for the chosen quantiles and these can be used as an indication of aleatoric uncertainty.

Conformalized Quantile Regression (CQR): Conformal Prediction is a post-hoc uncertainty quan-
tification method to yield calibrated predictive uncertainty bands with proven coverage guarantees
Angelopoulos & Bates (2021). Based on a held out calibration set, CQR uses a score function to
find a desired coverage quantile q̂ and conformalizes the QR output by adjusting the quantile bands
via q̂ for an unseen test point as follows x⋆:

T (x⋆) = [ŷα/2(x⋆)− q̂, ŷ1−α/2(x⋆) + q̂] (70)

where ŷα/2(x⋆) is the lower quantile output and ŷ1−α/2(x⋆), Romano et al. (2019).

4.2 DIFFUSION BASED UQ METHODS

CARD: The classification and regression diffusion (CARD) models, as introduced in Han et al.
(2022), combine a denoising diffusion-based conditional generative model and a pre-trained condi-
tional mean estimator in order to obtain a predictive distribution given an input. Given a target y⋆
and input x⋆ CARD utilizes a series of intermediate predictions y1:T for a number of steps T ∈ N.
The parameters of the diffusion-based conditional generative model are obtained by optimising the
following objective

LELBO(y
⋆, x⋆) = L0(y

⋆, x⋆) +

T∑
t=2

Lt−1(y
⋆, x⋆) + LT (y

⋆, x⋆), (71)

where the individual terms are given by

L0(y
⋆, x⋆) = Eq [− log(pθ(y

⋆|y1, x)] (72)

Lt−1(y
⋆, x⋆) = Eq [DKL(q(yt−1|yt, y0, x)||pθ(yt−1|yt, x))] (73)

LT (y
⋆, x⋆) = Eq [DKL(q(yT |, y0, x)||p(yT |x))] (74)

and the predictive distribution p(yT |x) is obtained by a MAP estimate, in our case the deterministic
base model,

p(yT |x) = N (fθMAP
(x), I). (75)

Following Pandey et al. (2022) the forward process of conditional distributions with a diffision
schedule (βt)

T
t=1 ∈ (0, 1)T is defined such that a closed-form solution exists,

p(yt|yt−1, fθMAP
(x)) = N (yt;

√
1− βtyt + (1−

√
1− βt)fθMAP

(x), βtI), (76)

this admits a closed form and non-iterative solution at each time step t ∈ {1, ..., T},
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p(yt|y0, fθMAP
(x)) = N (yt;

√
αtyt + (1−

√
αt)fθMAP

(x), βtI), (77)

with αt = Πt
l=1(1 − βl). For regression the goal is to reverse the above diffusion process to

recover the distribution of the noise term and, hence, obtaining the aleatoric uncertainty of the second
moment predictive distribution p(y|x). For this a neural network ϵθ is trained that given a sample
yt predicts the corresponding noise ϵϵθ(x, yt, fθMAP

(x), t). The predictive mean and uncertainty,
in terms of standard deviation, is obtained by moment matching with the predictive samples y0
approximating the labels y⋆.

4.3 PARTIALLY STOCHASTIC NETWORK STRATEGIES

In order to adapt the Bayesian UQ methods to large EO data sets, we support partially stochastic
NNs following the approach presented in Sharma et al. (2023). In Sharma et al. (2023) the authors
demonstrate experimentally and theoretically that partially stochastic networks can also approxi-
mate predictive distributions. There are multiple ways to obtain partially stochastic networks. For
the Laplace Approximation and SWAG methods, we use a two-stage training. First, all parameters
are obtained by a MAP estimate. Then, in the second training stage the stochastic parameters are ob-
tained. For BNN with VI and BNN+LV we use joint training, where the stochastic and deterministic
parameters are learnt jointly by maximising the evidence lower bound or the so called α-divergence,
Depeweg et al. (2018).

5 METRICS

Regression tasks are commonly evaluated by accuracy metrics such as Root Mean Squared Error
(RMSE) or coefficient of determination, R2. A better quality of prediction is indicated by a lower
RMSE and MAE and a R2 score close to 1.0. However, these measures only characterize the error
between point predictions and available targets. When considering UQ methods, we therefore need
additional metrics in the form of proper scoring rules Gneiting & Raftery (2007) which do not
ignore predictive uncertainty. In particular, we consider the negative log-likelihood (NLL) of a
Gaussian as a proper scoring rule, Gneiting & Raftery (2007). Moreover, we consider calibration
as introduced in Kuleshov et al. (2018). As neither the NLL or calibration are sufficient to verify a
useful forecast since a model with large predictive uncertainties can be well calibrated and obtain
a sufficient NLL, we additionally consider sharpness, which measures the mean of the predictive
uncertainties. We use Chung et al. (2021) for metric computation and some plots.

The RMSE is computed between the targets y = (yi)
N
i=1 and the mean model predictions f(x) =

(f(xi))
N
i=1 for N samples as

RMSE(f(x),y) =

√√√√ 1

N

N∑
i=1

(f(xi)− yi)2. (78)

The MAE is computed as

MAE(f(x),y) =
1

N

N∑
i=1

|f(xi)− yi|. (79)

The R2 is computed as

R2 = R2(f(x),y) = 1−
∑N

i=1(f(xi)− yi)
2∑N

i=1

(
f(xi)− 1

N

∑N
j=1 f(xj)

)2 . (80)

However, these measures only characterize the error between point predictions and available targets.
In order to compare the predictive uncertainties to the target distribution, we need additional metrics,
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such as proper scoring rules Gneiting & Raftery (2007). We consider the NLL of a Gaussian as a
proper scoring rule Gneiting & Raftery (2007). We also report the miscalibration area, where a lower
miscalibration area indicates a better fit of the predictive uncertainties to the true target distribution.
To quantify the overall confidence of a model in a single metric, we consider sharpness which
computes the mean of the predictive uncertainties. We use Chung et al. (2021) for computing these
metrics.

The NLL is computed between the targets y = (yi)
N
i=1 and the mean model predictions f(x) =

(f(xi))
N
i=1 and predictive uncertainties σ(x) = (σ(xi))

N
i=1 for N samples as NLL is computed as

NLL((f(x),σ(x)),y) =
1

N

N∑
i=1

(
1

2
ln
(
2πσ(xi)

2
)
+

1

2σ(xi)2
(f(xi)− yi)

2

)
, (81)

Additional we consider the scoring rule of the Continuous Ranked Probability Score (CRPS), which
for single sample and a predictive distribution that is Gaussian is given by

crps(N (µ, σ), y) = −σ

(
y − µ

σ
(2Φ

(
y − µ

σ

)
− 1) + 2ϕ

(
y − µ

σ

)
− 1√

π

)
, (82)

where Φ is the cumulative density function and ϕ probability distribution of N (0, 1). Then, we
compute the average sum over all predictions and labels, where fθ(x

⋆
i ) = (µ(x⋆

i ), σ(x
⋆
i )), which

gives the reported CRPS,

CRPS =
1

N⋆

N⋆∑
i=1

crps(fθ(x
⋆
i ), y

⋆
i ). (83)

The miscalibration area is computed based on Chung et al. (2021) and is identical to mean absolute
calibration error, however the integration here is taken by tracing the area between curves.

The sharpness is computed as

sharpness(σ(x)) =

√√√√ 1

N

N∑
i=1

σ(xi)2. (84)

Another key aspect for assessing the reliability of uncertainty estimates is calibration. Calibration
refers to the degree to which a predicted distribution matches the true underlying distribution of the
data. The mean absolute calibration error, (MACE), gives the mean absolute error of the expected
and observed proportions for a given range of quantiles.

6 TRAINING DETAILS

We train all methods with the SGD or Adam optimizer Kingma & Ba (2014) with default parameters
for a minimum of 50 epochs until convergence based on the validation loss and evaluate the trained
model on the in and out of distribution sets. BNNs, DKL, DUE and CARD were trained with
Adam while other methods where trained with SGD. All methods and experiments are implemented
in Pytorch Paszke et al. (2019) and Lighting Falcon & Team (2019) to enhance reproducibility of
results.
For the Deep Ensemble we use five independently trained Gaussian Networks, for MC-Dropout
and SWAG we use the settings suggested by Maddox et al. (2019), for the Laplace Approximation
we use a Kronecker factored Hessian approximation through the Laplace library Daxberger et al.
(2021a), for the DKL implementation we follow van Amersfoort et al. (2021), for the BNN we use
Krishnan et al. (2022) with their default parameters and for Quantile Regression we predict quantiles
0.1, 0.5, and 0.9 Angelopoulos & Bates (2021).
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