Lehmann, Nils und Gottschling, Nina Maria und Depeweg, Stefan und Nalisnick, Eric (2024) Uncertainty Aware Tropical Cyclone Wind Speed Estimation From Satellite Data. In: Machine Learning for Remote Sensing (ML4RS), ICLR 2024, Seiten 1-31. Machine Learning for Remote Sensing (ML4RS), ICLR 2024, 2024-05-11, Wien, Österreich.
PDF
2MB |
Offizielle URL: https://ml-for-rs.github.io/iclr2024/camera_ready/papers/21.pdf
Kurzfassung
Deep neural networks (DNNs) have been successfully applied to earth observation (EO) data and opened new research avenues. Despite the theoretical and practical advances of these techniques, DNNs are still considered black box tools and by default are designed to give point predictions. However, the majority of EO applications demand reliable uncertainty estimates that can support practitioners in critical decision making tasks. This work provides a theoretical and quantitative comparison of existing uncertainty quantification methods for DNNs applied to the task of wind speed estimation in satellite imagery of tropical cyclones. We provide a detailed evaluation of predictive uncertainty estimates from state-of-the-art uncertainty quantification (UQ) methods for DNNs. We find that predictive uncertainties can be utilized to further improve accuracy and analyze the predictive uncertainties of different methods across storm categories.
elib-URL des Eintrags: | https://elib.dlr.de/205424/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Uncertainty Aware Tropical Cyclone Wind Speed Estimation From Satellite Data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 11 Mai 2024 | ||||||||||||||||||||
Erschienen in: | Machine Learning for Remote Sensing (ML4RS), ICLR 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 1-31 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Künstliche Intelligenz, Quantifizierung von Unsicherheiten | ||||||||||||||||||||
Veranstaltungstitel: | Machine Learning for Remote Sensing (ML4RS), ICLR 2024 | ||||||||||||||||||||
Veranstaltungsort: | Wien, Österreich | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsdatum: | 11 Mai 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Big Data und KI für die Entscheidungsunterstützung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Gottschling, Nina Maria | ||||||||||||||||||||
Hinterlegt am: | 25 Jul 2024 13:50 | ||||||||||||||||||||
Letzte Änderung: | 13 Aug 2024 16:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags