Sarauer, Ellen and Schwabe, Mierk and Weiss, Philipp and Lauer, Axel and Stier, Philip and Eyring, Veronika (2024) Physics-informed Machine Learning-based Cloud Microphysics parameterization for Earth System Models. In: Physics-informed Machine Learning-based Cloud Microphysics parameterization for Earth System Models. The Twelfth International Conference on Learning Representations. Workshop: Tackling Climate Change with Machine Learning, 2024-05-07 - 2024-05-11, Wien, Österreich.
![]() |
PDF
11MB |
![]() |
PDF
1MB |
Abstract
In this study, we develop a physics-informed machine learning (ML)-based cloud microphysics parameterization for the ICON model. By training the ML parameterization on high-resolution simulation data, we aim to improve Earth System Models (ESMs) in comparison to traditional parameterization schemes. We investigate the usage of a multilayer perceptron (MLP) with feature engineering and physics-constraints, and use explainability techniques to understand the relationship between input features and model output. Our novel approach yields promising results, with the physics-informed ML-based cloud microphysics parameterization achieving an R score up to 0.777 for an individual feature. Additionally, we demonstrate a notable improvement in the overall performance in comparison to a baseline MLP, increasing its average R score from 0.290 to 0.613 across all variables. This approach to improve the representation of cloud microphysics in ESMs promises to enhance climate projections, contributing to a better understanding of climate change.
Item URL in elib: | https://elib.dlr.de/204924/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster, Other) | ||||||||||||||||||||||||||||
Title: | Physics-informed Machine Learning-based Cloud Microphysics parameterization for Earth System Models | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | May 2024 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Physics-informed Machine Learning-based Cloud Microphysics parameterization for Earth System Models | ||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Machine Learning, Earth System Model, Cloud Microphysics, Cloud Parameterization | ||||||||||||||||||||||||||||
Event Title: | The Twelfth International Conference on Learning Representations. Workshop: Tackling Climate Change with Machine Learning | ||||||||||||||||||||||||||||
Event Location: | Wien, Österreich | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 7 May 2024 | ||||||||||||||||||||||||||||
Event End Date: | 11 May 2024 | ||||||||||||||||||||||||||||
HGF - Research field: | other | ||||||||||||||||||||||||||||
HGF - Program: | other | ||||||||||||||||||||||||||||
HGF - Program Themes: | other | ||||||||||||||||||||||||||||
DLR - Research area: | Quantum Computing Initiative | ||||||||||||||||||||||||||||
DLR - Program: | QC AW - Applications | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | QC - Klim-QML | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Earth System Model Evaluation and Analysis | ||||||||||||||||||||||||||||
Deposited By: | Sarauer, Ellen | ||||||||||||||||||||||||||||
Deposited On: | 25 Jun 2024 09:48 | ||||||||||||||||||||||||||||
Last Modified: | 27 Aug 2024 11:26 |
Repository Staff Only: item control page