
Motivation
• ML models trained on high-resolution climate simulations or 

observations, coupling with coarse climate models reduces biases in 
Earth system models (ESMs) [1,2]

• Novel approach to enhance subgrid-scale cloud microphysics in ESMs   
for the Icosahedral Non-hydrostatic modeling framework (ICON) 

• Cloud microphysics parameterization only been emulated at the same 
resolution as simulation data [3,4]

• Integrating higher resolution dynamics into the lower resolution ESM, 
particularly beneficial for cloud convection studies

• Developing an ML-based parameterization based on more complex 
graupel scheme (in comparison to current ESMs)

Goal: Improve Earth System Models by replacing traditional 
parameterization schemes with Machine learning based 
parameterizations

Machine learning methodology
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High-resolution climate data
• Using ICON Sapphire [5,6] with prescribed sea ice 

and sea surface temperature and 5 km resolution

• Run the simulation for 30 days from 20 January 
2020, microphysics model time step set to 40 
seconds, store data every three hours

• Coarse-graining, adopting the same methodology 
as [7] mapping the data to a coarser ICON grid 
with a horizontal resolution of 80 km
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Output variable R-squared (base) R-squared (full)

Tendency Temperature [T/s] 0.370 0.726

Tendency water vapor [kg/kg/s] 0.367 0.731

Tendency cloud liquid water [kg/kg/s] 0.412 0.777

Tendency cloud ice [kg/kg/s] 0.337 0.687

Tendency rain [kg/kg/s] 0.188 0.492

Tendency snow [kg/kg/s] 0.126 0.388

Tendency graupel [kg/kg/s] 0.226 0.493

Results
• Physics constraining does not affect overall 

performance but leads to improved and stable 
simulations when coupled to climate models

• Explainability techniques such as Shapley value 
calculation reveal strong correlations between 
microphysical tendencies and air pressure, 
temperature, and vertical velocity

• Feature engineered variables describing relative 
differences between tracers lead to better 
prediction than mass mixing ratios, cf. figures     
and table

Outlook
• Improve model performance by generating a more balanced dataset 

through multiple shorter simulations

• Implement and evaluate ML-based microphysics parameterization in a 
global climate model (online coupling) for full benefits. 

• Develop cloud microphysics and convection parameterization to 
reduce uncertainties in climate simulations
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