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Oberpfaffenhofen
Germany

Philipp Weiss
Atmospheric, Oceanic and Planetary Physics
Department of Physics
University of Oxford
UK

Axel Lauer
Deutsches Zentrum für Luft- und Raumfahrt
Institut für Physik der Atmosphäre
Oberpfaffenhofen
Germany

Philip Stier
Atmospheric, Oceanic and Planetary Physics
Department of Physics
University of Oxford
UK

Veronika Eyring
Deutsches Zentrum für Luft- und Raumfahrt
Institut für Physik der Atmosphäre
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ABSTRACT

In this study, we develop a physics-informed machine learning (ML)-based
cloud microphysics parameterization for the ICON model. By training the
ML parameterization on high-resolution simulation data, we aim to improve
Earth System Models (ESMs) in comparison to traditional parameterization
schemes. We investigate the usage of a multilayer perceptron (MLP) with
feature engineering and physics-constraints, and use explainability techniques
to understand the relationship between input features and model output. Our
novel approach yields promising results, with the physics-informed ML-based
cloud microphysics parameterization achieving an R2 score up to 0.777 for an
individual feature. Additionally, we demonstrate a notable improvement in the
overall performance in comparison to a baseline MLP, increasing its average
R2 score from 0.290 to 0.613 across all variables. This approach to improve
the representation of cloud microphysics in ESMs promises to enhance climate
projections, contributing to a better understanding of climate change.

1 INTRODUCTION

Machine learning (ML) made great strides in enhancing Earth System Models (ESMs) by replacing
traditional parameterizations that are based on empirical and physical understanding and represent
the statistical effect of a given process at the grid scale of the climate model (Rasp et al., 2018;
Reichstein et al., 2019; Eyring et al., 2023b). For this, typically ML models are trained on
high-resolution climate simulations or observations and then coupled to the coarse climate model,
potentially eliminating long-standing biases in ESMs (Gentine et al., 2021; Grundner et al., 2022;
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Eyring et al., 2023a). However, in the literature, the cloud microphysics parameterization has
only been emulated on the same resolution as the simulation data (Gettelman et al., 2021; Han
et al., 2020; Perkins et al., 2023). Therefore, this study presents a novel approach for learning
the cloud microphysics parameterization by incorporating higher resolution dynamics into the
lower resolution ESM. This will be especially beneficial when parameterizing cloud convection
together with cloud microphysics in future studies. The parameterization of cloud microphysics
is central in traditional ESMs, working closely coupled to the convection scheme in order to
model the behavior of clouds. It calculates the formation, growth and removal of cloud liquid
water particles and captures phase changes. Additionally, cloud microphysics processes impact the
lifetime of clouds, the water vapor distribution outside of clouds, the fluxes of water and radiation
through the atmosphere, and latent heating. We aim to enhance the representation of subgrid-scale
cloud microphysics within the coarse-scale Icosahedral Non-hydrostatic modeling framework
(ICON) (Zängl et al., 2014; Giorgetta et al., 2018), which traditionally employs the single moment
microphysical scheme (Lohmann & Roeckner, 1996). This scheme focuses on prognostic equations
for the mass mixing ratios (MMRs) of water vapor, cloud liquid water, cloud ice, and rain. In order
to improve upon this baseline, we propose the development of an ML-based parameterization that is
trained on ICON simulation data that uses the more complex graupel scheme (Rutledge & Hobbs,
1984; Baldauf et al., 2011). The graupel scheme not only calculates the MMR of snow and graupel
but also provides precipitation rates for rain, snow, and graupel. Moreover, the use of high-resolution
simulation data allows us to incorporate the statistical effects of higher-resolved dynamics into the
ML model. This holds the potential to further improve the cloud microphysics parameterization and
enhance the accuracy of ESMs.

2 METHODOLOGY

2.1 UNDERLYING DATASET

We generate high-resolution data through a simulation setup utilizing the atmospheric component of
ICON Sapphire (Hohenegger et al., 2023; NextGems, 2024) with a horizontal resolution of roughly
5 km. An illustration of the simulation is given in the Appendix A, Figure 3. The model time step for
cloud microphysics is set to 40 seconds. To keep the data volume manageable, we store data every
three simulated hours, namely, the mean over that time period of all input and output parameters
used in the ML parameterization (see below). We run the simulation for 30 days from 20 January
2020 and discard the first ten days as spin-up period. We use ERA5 boundary conditions from
Hersbach et al. (2020) to initialize the model with historical weather data, ozone concentrations,
aerosol concentrations, ocean properties like the sea surface temperature and sea salt concentration,
and land properties. Subsequently, we proceed to a coarse-graining technique where we compute
the mean of the variables using a weighting system based on the grid cell size, adopting the same
methodology as Grundner et al. (2022), mapping the data to a coarser ICON grid with a horizontal
resolution of 80 km. We consider a cell-based approach and preselect for grid cells that contain a
sufficient amount of cloud MMR (cloud liquid water mqc, cloud ice mqi) or precipitation MMR (rain
mqr, snow mqs, graupel mqg) defined as follows

(mqc +mqi) ≥ 10−5 kg · kg−1, (mr +ms +mg) ≥ 10−7 kg · kg−1. (1)

The coarse-graining and preselection strategy results in a total data set size of approximately 6.4
million samples, which we randomly split into training, validation and testing sets. We scale the
data with respect to the standard deviation and the mean of the training set.

2.2 MACHINE LEARNING MODEL

As discussed in de Burgh-Day & Leeuwenburg (2023), incorporating domain knowledge into
ML parameterizations increases the performance. Figure 1 shows an overview of the ML
parameterization developed in this work. Since the goal is to run the ML model online in an
ICON simulation run, we prioritize a simpler model architecture (shown in blue in the figure)
and focus on implementing additional meaningful input features, introducing constraints to avoid
unphysical negative MMRs, and explain the model’s behavior with explainability methods. The
training of the base multilayer perceptron (MLP) model is structured as follows: 27 input nodes
for the microphysical input parameters, three hidden layers with 256 nodes each using the ReLu
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activation (Agarap, 2019), 7 output nodes using linear activation. For the used set of input and output
parameters and their description the reader is referred to the Appendix A, Table 2. We train the model
over 100 epochs and optimize the model’s hyperparameters with the Keras tuner (O’Malley et al.,
2019). Feature engineering provides a methodology to incorporate additional physical information
into the ML parameterization model (Zheng et al., 2021). Since the Graupel scheme calculates the
phase transition from different microphysical tracers, we introduce the relative difference in MMRs
between the aggregate states of water as an additional model input. The relative difference ∆mq1,q2

for MMRs m of the tracers q1 and q2 is defined as follows:

∆mq1,q2 =
mq1 −mq2

mq2

, if mq2 > 0, else ∆mq1,q2 = 0. (2)

During the preselection procedure of our simulated dataset we find that the classical parameterization
produces negative masses, or tendencies that lead to negative masses after the application of the
classical parameterization in 4% of the samples in the preselected dataset. When these effects occur
in the classical parameterization, the ICON model sets the negative masses to zero and recalculates
the tendencies. To incorporate this correction into our model, we apply the method of physics
constraining for negative masses following the approach of Harder et al. (2022). We modify the
weights of the output layer during the optimization of the MLP, constraining all tendencies ∆q not
fulfilling the condition

mq,t1 = mq,t0 +∆t ·∆q ≥ 0. (3)

Here, mq,t1 is the MMR after the application of the parameterization, and mq,t0 the MMR before
the application of the parameterization. The tendency ∆q represents the rate of change of the MMR
per internal model time step ∆t in the ICON simulation, which is 40 s in this study. Finally, for the
purpose of explainability, the input feature importance ranking performed in this study is computed
via the SHAP package (Lundberg & Lee, 2017). This package follows the game theory approach of
the calculation of Shapley values.

3 RESULTS

Our study evaluates the performance of the physics-informed MLP algorithm with feature
engineering (blue, yellow and green model in Figure 1) on the coarse-grained ICON simulation
test dataset in comparison with the physics-informed MLP model without feature-engineered
input variables (blue and green model in Figure 1). By hyperparameter tuning with Keras
tuner, we identify the physics-informed ML algorithm that best captures the characteristics of the
coarse-grained high-resolution simulation data and the additional input features. Even though the
cloud microphysics parameterization is a complex problem to tackle (cf. Appendix A, Figure 4),
we are able to reach a goodness of fit of 0.613 R2 score averaged over all output features, with
achieving the best regression output for the cloud liquid water MMR (0.777 R2 score). For the
specific goodness of fit for the individual output features are presented in Table 2. The goodness
of fit for the tendencies of temperature and cloud properties (water vapor, cloud liquid water and
cloud ice) are better compared to the tendencies for precipitation (rain, snow, graupel). This
may be due to a lack of events with high precipitation MMR in the training dataset. With the
introduction of additional input features, we are able to improve the model’s performance from

Figure 1: Overview of the presented ML parameterization. The baseline MLP model is shown
(blue) with additional input features obtained via feature engineering (yellow), negative mass
constraining (green) and explainability (red).
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Figure 2: ML predictions vs. ground truth of water vapor MMR tendencies without (left) and with
(right) additional input features. The colors illustrate the density of the data on a logarithmic scale.

0.290 to 0.613 R2 score. As an example, the tendency of the MMR of water vapor is examined
in Figure 2, showcasing the outcomes of the feature engineering technique. In the panels, the ML
parameterization predictions of the tendencies are shown as function of the training data for the
MLP trained without (left) resp. with (right) the feature-engineered input. Both figures indicate that
the ML parameterization overestimates tendencies that are zero in the classical parameterization or
the ML prediction. This could be due to an over-representation of microphysical tracers with values
very close to zero in their distributions. Moreover, the MLP trained without feature-engineered input
variables exhibits a more extensive spread of data compared to that incorporating the additional
input variables. We see an enhancement of the model’s performance through feature engineering.
However, by training the baseline MLP on a more balanced training data set, we can anticipate the
model to independently capture these features. The comparison between model prediction and test
dataset (ground truth) for the other variables can be found in Appendix A, Figure 5. In contrast
to feature engineering, constraining unphysical values in the training dataset as described above
does not have an impact on the overall performance of the ML parameterization. Nevertheless, we
expect the constrained ML parameterization to lead to an improved and more stable simulation when
coupled to the climate model in future work. Furthermore, we employ explainability techniques to
gain a better understanding of the relationships between different input features and the resulting
model output, i.e., microphysical tendencies. Detected by the Shapley value calculation, we observe
a strong correlation between the microphysical tendencies and both air pressure and temperature.
This is due to clouds and precipitation occuring more often at certain height levels and the direct
influence of temperature on phase transitions. Moreover, the vertical velocity and meridional wind
also play a significant role in determining the microphysical properties. This could stem from the fact
that convective clouds are coupled to the strong vertical updraft, and that the overall dynamics of the
atmosphere are strongly influenced by the wind. We will elaborate on this aspect in future work when

Table 1: Goodness of fit measures for the regression output in the ML parameterization without
additional input features (base) compared with additional input features (marked bold). The table
shows for each output variable: arithmetic average (mean) and standard deviation (σ), root mean
squared error (RMSE), and squared pearson correlation (R2).

OUTPUT MEAN σ RMSE (base) RMSE R2 (base) R2

tend ta mig 3.87·10−5 2.31·10−4 1.83·10−4 1.21·10−4 0.370 0.726
tend qv mig 1.77·10−8 9.91·10−8 7.88·10−8 5.14·10−8 0.367 0.731
tend qc mig 8.51·10−10 8.92·10−8 4.21·10−8 5.20·10−8 0.412 0.777
tend qi mig 2.71·10−10 2.92·10−9 2.37·10−9 1.63·10−9 0.337 0.687
tend qr mig 1.13·10−9 1.71·10−8 1.54·10−8 1.22·10−8 0.188 0.492
tend qs mig 5.46·10−10 8.91·10−9 8.33·10−9 6.97·10−9 0.126 0.388
tend qg mig 5.02·10−10 2.11·10−8 1.86·10−8 1.51·10−8 0.226 0.493
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parameterizing microphysics together with convection. Additionally, the feature importance for the
variables that describe the relative difference between the tracers is larger than that of the MMRs
themselves. This implies that the additional input features derived with the feature engineering
method are a good choice.

4 DISCUSSION

In this study, we conduct a 5 km-scale simulation with the atmospheric component of the Earth
System Model ICON to produce a dataset that contains inputs and outputs of the existing cloud
microphysics parameterization. We coarse-grain the data to 80 km resolution, train an MLP model
by including physical information through feature engineering, and ensure meaningful outputs of the
model by incorporating the physical constraint of preventing negative masses. By ranking the feature
importance, we are able to find the most important input features for the ML parameterization. The
physics-informed ML-based cloud microphysics parameterization achieves a goodness of fit of up to
0.777 R2 score for one individual feature. We improve the baseline MLP model’s performance from
0.290 R2 score to 0.613 R2 score averaged over all variables. Nevertheless, the model performance
can be further improved by generating a more balanced dataset, e.g. conducting multiple shorter
simulations at different times of the year. Moreover, the full benefits of this approach will only
become apparent when implementing this ML-based microphysics parameterization in a global
climate model. Overall, our study presents a novel approach to parameterize cloud microphysical
processes by introducing small-scale dynamical processes from high resolution simulations. The
findings of this research provide a foundation for a future cloud microphysics and convection
parameterization, reducing the uncertainties of clouds in climate simulations with current models.
With our work, we aim to improve the accuracy and reliability of climate projections, contributing
to a better understanding of climate change and its implications.
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H. Schmidt, U. Schulzweida, F. Schütte, H. Segura, R. Shevchenko, V. Singh, M. Specht, C. C.
Stephan, J.-S. von Storch, R. Vogel, C. Wengel, M. Winkler, F. Ziemen, J. Marotzke, and
B. Stevens. Icon-sapphire: simulating the components of the earth system and their interactions
at kilometer and subkilometer scales. Geoscientific Model Development, 16(2):779–811, 2023.
doi: 10.5194/gmd-16-779-2023.

Jülich Supercomputing Centre. JUWELS Cluster and Booster: Exascale Pathfinder with Modular
Supercomputing Architecture at Juelich Supercomputing Centre. Journal of large-scale research
facilities, 7(A138), 2021. doi: 10.17815/jlsrf-7-183. URL http://dx.doi.org/10.
17815/jlsrf-7-183.

U. Lohmann and E. Roeckner. Design and performance of a new cloud microphysics scheme
developed for the echam general circulation model. Climate Dynamics, 12:557–572, 1996.

S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc., 2017.

6

http://dx.doi.org/10.17815/jlsrf-7-183
http://dx.doi.org/10.17815/jlsrf-7-183


Tackling Climate Change with Machine Learning workshop at ICLR 2024

2021 NextGems. Next generation earth modelling systems. https://cordis.europa.eu/
project/id/101003470, 2024. Accessed 22 January 2024.

T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al. Kerastuner, 2019. https:
//github.com/keras-team/keras-tuner, 2019. Accessed 15 December 2023.

W. A. Perkins, N. D. Brenowitz, C. S. Bretherton, and J. M. Nugent. Emulation of cloud
microphysics in a climate model. June 2023. doi: 10.22541/essoar.168614667.71811888/v1.

S. Rasp, M. S. Pritchard, and P. Gentine. Deep learning to represent sub-grid processes in climate
models. Proceedings of the National Academy of Sciences, 115(39):9684–9689, September 2018.
ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1810286115. arXiv:1806.04731 [physics, stat].

M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat. Deep
learning and process understanding for data-driven earth system science. Nature, 566(7743):
195–204, February 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-0912-1.

S. A. Rutledge and P. V. Hobbs. The mesoscale and microscale structure and organization of
clouds and precipitation in midlatitude cyclones. xii: A diagnostic modeling study of precipitation
development in narrow cold-frontal rainbands. Journal of Atmospheric Sciences, 41(20):2949 –
2972, 1984. doi: 10.1175/1520-0469(1984)041⟨2949:TMAMSA⟩2.0.CO;2.

NASA visible earth. NASA visible earth. https://visibleearth.nasa.gov/, 2024.
Accessed 22 January 2024.

G. Zängl, D. Reinert, P. Rı́podas, and M. Baldauf. The ICON (ICOsahedral Non-hydrostatic)
modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core.
Quarterly Journal of the Royal Meteorological Society, 141(687):563–579, June 2014. doi:
10.1002/qj.2378.

L. Zheng, R. Lin, X. Wang, and W. Chen. The development and application of machine learning
in atmospheric environment studies. Remote Sensing, 13(23), 2021. ISSN 2072-4292. doi:
10.3390/rs13234839.

A APPENDIX

ADDITIONAL FIGURES

Figure 3 illustrates the underlying simulated dataset of this work. This figure shows the
microphysical MMRs. These parameters are important input features for the ML parameterization
developed in this work.

Figure 4 shows the correlation between the considered input and output variables. It can be seen that
the input and output show low correlation. Therefore, one needs to include domain knowledge, e.g.,
physics-constraints and feature engineering into the model.

Figure 5 illustrates the goodness of fit results individually for all the output variables, i.e., the
microphysical tendencies.

ADDITIONAL TABLES

Table 2 lists the variables considered in this work. The variables added in the feature engineering
approach are marked as ’Feature Input’. The bold marked inputs are the ten most important input
features for the physics-informed MLP.

COMPUTING RESOURCES

We are only able to run the simulation for this short amount of time because of the substantial
computing resources necessary for running such a simulation (12k node hours for 30 days
simulation) and storing such a large volume of data (25 TB for the 20 days of high-resolution data
when reduced to 3-hourly output).
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Figure 3: Map of MMRs obtained from the simulation on model level 70 corresponding to a height
of about 3 kilometers. The upper figure shows water vapor (red), cloud liquid water (blue) and cloud
ice (green). The lower figure shows rain (red), snow (blue) and graupel (green). Earth illustration
from visible earth (2024).
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Table 2: Overview of all considered input and output features of the MLP model. The inputs marked
as ’Feature input’ are the additional features that stem from the feature engineering approach. The
inputs marked in bold text are the ten most important input features determined by Shapley values.

TYPE SHORT NAME DESCRIPTION UNIT

Input pf mig air pressure Pa
Input ta mig temperature T
Input omega vertical velocity m/s
Input ua mig zonal wind m/s
Input va mig meridional wind m/s
Input qv mig cloud vapor MMR kg/kg
Input qc mig cloud liquid water MMR kg/kg
Input qi mig cloud ice MMR kg/kg
Input qs mig snow MMR kg/kg
Input qr mig rain MMR kg/kg
Input qg mig graupel MMR kg/kg
Feature Input diff qv qc rel. diff. water vapor / cloud liquid water MMRs 1
Feature Input diff qv qr rel. diff. water vapor / rain MMRs 1
Feature Input diff qi qv rel. diff. cloud ice / water vapor MMRs 1
Feature Input diff qs qv rel. diff. snow / water vapor MMRs 1
Feature Input diff qv qg rel. diff. water vapor / graupel MMRs 1
Feature Input diff qc qi rel. diff. cloud liquid water / cloud ice MMRs 1
Feature Input diff qc qr rel. diff. cloud liquid water / rain MMRs 1
Feature Input diff qs qc rel. diff. snow / cloud liquid water MMRs 1
Feature Input diff qg qc rel. diff. graupel / cloud liquid water MMRs 1
Feature Input diff qr qs rel. diff. rain / snow MMRs 1
Feature Input diff qi qr rel. diff. cloud ice / rain MMRs 1
Feature Input diff qr qg rel. diff. rain / graupel MMRs 1
Feature Input diff qi qs rel. diff. cloud ice / snow MMRs 1
Feature Input diff qg qi rel. diff. graupel / cloud ice MMRs 1
Feature Input diff qs qg rel. diff. snow / graupel MMRs 1

Output tend ta mig tendency of temperature T/s
Output tend qv mig tendency of cloud vapor MMR kg/(kg·s)
Output tend qc mig tendency of cloud liquid water MMR kg/(kg·s)
Output tend qi mig tendency of cloud ice MMR kg/(kg·s)
Output tend qr mig tendency of rain MMR kg/(kg·s)
Output tend qs mig tendency of snow MMR kg/(kg·s)
Output tend qg mig tendency of graupel MMR kg/(kg·s)
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Figure 4: Pearson autocorrelation matrix for all raw input and output parameters. For an explanation
of the variable short names, the reader is referred to Table 2. The color bar ranges from negative
correlation (blue) over no correlation (white) to positive correlation (red).
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Figure 5: ML predictions vs. ground truth of the additional input variables (for the physics-informed
MLP with feature engineering). The colors illustrate the density of the data on a logarithmic scale.
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